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ProBLEMS

10-1. Calculate the fraction of hydrogen atoms ionized at 10,000°K when
p% = 0.01 moleliter—!. (Page 185.)

10-2. Calculate the fraction of hydrogen molecules dissociated into atoms
when p°Hz = 0.01 moleliter—! and (a) T = 1000°K, (b) T = 5000°K. (Page
185.

10)~3. Repeat the argument of Section 10-2, but maximize the partition func-
tion A(N4, N, p, T) [see Eq. (4-35)] at constant N, p, T instead of @ at con-
stant N, V, T.

10-4. In the example of Section 10-3, show that

Nalls — Nus = — J4s.
Why the negative sign?

10-5. Use the data in Table 8-1 to calculate K at 700°K for the reaction
2HI < Hz + I».

10-6. Calculate K at 1000°K for the reaction Iz = 2I (see Section 4—4 and
Table 8-1).

10-7. Calculate ©, for Ha, given that » = 3770 cm ™! for HD.

10-8. Calculate ©, for Hg, given that, for Hg, D, = 4.722 ev and Do = 4.454
ev.
10-9. Calculate K for the “water-gas” reaction at 1200°K using data in the

text.

SUPPLEMENTARY READING

FowrLer and GuecengEM, Chapter 5.
Maver and MAYER, Chapter 9.
RuseBroOKE, Chapter 11.

CHAPTER 11

THE RATE OF CHEMICAL REACTIONS IN IDEAL
GAS MIXTURES

Strictly speaking, the subject indicated in the chapter title is outside
the scope of this book, which is devoted to equilibrium statistical me-
chanics. However, Eyring’s approximate absolute reaction rate theory
has a quasi-equilibrium foundation: it is based on an application of the
chemical equilibrium theory of the preceding chapter. For this reason,
and because of its importance, it seems appropriate to include an account
of the Eyring theory in the present work. But the treatment we give will
be very brief, and we shall not consider any detailed special cases. The
reader should consult the book by Glasstone, Laidler, and Eyring (see
the Supplementary Reading list) for further details.

More exact approaches to this problem will not be discussed here, since
they cannot be put in quasi-equilibrium form.

An example of a nonchemical application of Eyring’s theory is presented
in Section 11-3: the surface diffusion of a dilute, localized monolayer.

11-1 Potential surfaces. There are two distinct stages in the Eyring
theory. The first is the purely quantum-mechanical one of calculating the
ground-state electronic energy surface (potential surface, for short) for
the reaction, and the second is the statistical-mechanical calculation of
the reaction rate. This division is the same as that which we have en-
countered in calculating the thermodynamic functions of, say, an ideal
polyatomic gas (Chapter 9). In this latter problem, we first have to find
the potential surface of the molecule by quantum mechanics (or obtain
equivalent information empirically from spectroscopy). This surface
(see Section 9-1) determines the equilibrium structure of the molecule,
the moments of inertia, the vibrational force constants and normal co-
ordinates, and the depth of the potential well in the surface relative, say,
to separated atoms as zero. With this information, we can then turn to the
statistical-mechanical problem of deducing the thermodynamic funections.

We discuss the potential-surface part of the rate problem in this section,
and the statistical-mechanical part in the next section.

For ease of visualization, let us consider a hypothetical one-dimensional
reaction

A+ BC — AB + C. (11-1)

Three atoms and (in one dimension) three nuclear coordinates are in-
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Fre. 11-1. Potential surface (u.) in the form of a contour diagram for a
hypothetical one-dimensional reaction 4 + BC — AB + C. The numbers on
the contours are values of u, in arbitrary units.

volved. One coordinate is concerned with the center of mass and is there-
fore uninteresting for the above process. The other two coordinates de-
termine the configuration of the three nuclei relative to each other (see
Appendix V). For example, we might choose for these two coordinates the
internuclear distances r4p and rge. For given values of r45 and rBC
the ground-state electronic energy u.(rap, rac) is calculated. From a
large number of such values of 74 3 and r BC, One can construct a potential
surface in the form of a contour diagram, which in a typical case might
appear as in Fig. 11-1. The valley at the upper left corresponds to an A
atom and a diatomic BC molecule. (The curvature of the surface at the
bottom of and perpendicular to the valley determines the vibrational
frequency in BC; the depth of the valley is a measure of the energy of the
bond BC.) The valley at the lower right corresponds to the state AB - C.
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Fig. 11-2. (a) Potential energy (u.) along the reaction _path in Fig. 11-1.
Note the potential barrier. (b) Corresponding curve fI:om Fig. 11-3. Note the
minimum in %, (stable molecule, ABC). (¢) Corresponding curve from Fig. 11-4.

The high plateau is A 4+ B + C. When reaction (11-1) occurs, the 1‘owest
possible path from reactants (A + BC) to products (AB + C) is the
dashed line in Fig. 11-1. The highest point on this path is marked X in the
figure. This is the “activated state,” and the triatomic system A, B, C
at this point is referred to as an “activated complex,” denoted by (ABC)*.
If one plots the potential energy u, along the dashed path of Flg. 11-1
as a function of the distance along the path (called the “reaction co-
ordinate”), one obtains a curve as in Fig. 11-2(a). The height Au’ of the

potential energy barrier which must be overcome is called the “activation
energy.”




192 THE RATE OF CHEMICAL REACTIONS [craP. 11

11
A
5 +B+cC
9
i
8 l
. |

TBC

A+ BC

TAB

AB + C

F1e. 11-3. Potential surface (u.) in the form of a contour diagram in one-
dimensional case where stable molecule ABC is formed.

For the reverse reaction,
AB+C— A+ BC, (11-2)

the reaction path in Fig. 11-1 must be reversed in direction. In this
example the activated state and complex (X in Fig. 11-1) are the same
for forward (11-1) and reverse (11-2) reactions. Let

Au, = u,(AB + C) — u.(4A + BC). (11-3)

This is Au, for the reaction as written in (11-1) and has the same meaning
as A€, in Eq. (10-32). In Fig. 11-1 it is determined by the difference in
levels of the two valleys. In Figs. 11-1 and 11-2(a), Au, is negative. If
Aug is the activation energy for the forward reaction, AuF — Au, is the
activation energy for the reverse reaction.
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TBC

Fi1e. 11-4. Potential surface (u,) in which a basin occurs between two
potential barriers.

In a real (three-dimensional) triatomic reaction we would need a con-
tour diagram in three-dimensional (r4p, rac, r4c¢) instead of two-di-
mensional space (or a surface in four-dimensional space). But the general
concepts introduced above for a hypothetical one-dimensional reaction
remain the same. Incidentally, it should be noticed that linear configura-
tions of A, B, C are included in the potential surface (in fact, activated
complexes in triatomic reactions are usually linear), and we recall that
linear molecules have four, not three, vibrational coordinates. However,
this is not contradictory to the statement that u, is a function of the three
variables r4 g, 75¢, and r4¢ only, for two of the normal modes in a linear
molecule are degenerate (i.e., of the same frequency). For example, the
positions of the atoms in the two degenerate modes of CO, [shown pre-
ceding Eq. (9-3)] are expressible by the same sets of values of r4 3, rzc,
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and r4¢ (the triangle ABC is merely rotated 90° in going from one mode
to the other).

In contrast to Fig. 11-1, we show in Fig. 11-3 what a typical (one-
dimensional again) potential surface might look like in the event that A,
B, and C formed a stable molecule ABC. The potential well in Fig. 11-3
is characteristic of a stable molecule. The equilibrium molecular geometry
of ABC is determined by the location of the bottom of the well, and the
vibrational motion of the molecule is determined by the shape of the well
in the neighborhood of the minimum [see also Section 9—1 and Eq. (V-1)].
A plot of u, as a function of distance along the lowest possible path from
the upper left valley to the lower right valley in Fig. 11-3 would appear
as in Fig. 11-2(b). This should be contrasted with Fig. 11-2(a).

Another type of potential surface is shown in Fig. 114. A basin is
situated between two potential barriers, X and X’. The potential energy
as a function of the reaction coordinate is shown in Fig. 11-2(c). A basin
may possibly occur,* for example, in the reaction

H+H2"—>H2+H.

11-2 Absolute rate theory. As a concrete example, let us return to the
reaction (11-1) and discuss it now as a real three-dimensional reaction.
We suppose that the potential surface is of the general type shown in
Fig. 11-1; that is, the potential “profile” has one potential barrier, as in
Fig. 11-2(a).

The fundamental assumption of the Eyring theory is that, during the
course of the reaction (11-1), molecular configurations corresponding to
the upper left valley in Fig. 11-1 (i.e., reactant molecules) are in thermo-
dynamic equilibrium with molecular configurations corresponding to the
neighborhood of the activated state X in Fig. 11-1 (i.e., activated com-
plexes). This is an assumption which cannot be rigorously correct, but
which is probably rather accurate in many cases. This assumption of
equilibrium between reactant molecules and activated complexes makes it
possible for us to use the methods of the preceding chapter on chemical
equilibria to deduce the concentration (defined below) of activated com-
plexes. From this knowledge, as we shall see, we can then calculate the
number of reactants passing over the barrier, from upper left to lower
right, per unit time and per unit volume of the system. This is the desired
reaction rate.

An activated complex is very much like an ordinary stable molecule.
It has a definite mass (m4 + mp + mc in this example) and a definite

*See GrassTone, Lamrer, and Evring (Supplementary Reading list),
p. 108, and R. E. WEsToN, JR., J. Chem. Phys. 31, 892 (1959).
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nuclear configuration (corresponding to the position of the X in Fig. 11-1
at the top of the potential barrier). This configuration determines the
moments of inertia and the symmetry number. Thus we can immediately
write (assuming the potential surface is available) the translational and
rotational partition functions for an activated complex, just as we did in
Chapter 9 for a stable molecule.

Furthermore, we can carry out a normal-coordinate analysis for the
vibrational frequencies, based on the shape of the potential surface in the
neighborhood of the activated state. If the activated complex is linear,
there will be 3n — 5 normal vibrational modes, otherwise there will be
3n — 6. The activated state is located at a saddle point in the potential
surface. That is, although the activated state is a maximum point along
the reaction coordinate, it is a minimum in other directions (e.g., in Fig.
11-1, in the direction perpendicular to the reaction coordinate). This
feature will appear automatically in the normal-coordinate analysis when
the potential energy wu, is expressed in terms of the normal coordinates
£ [see Eq. (V-13)]. Necessarily (i.e., by definition of a normal coordinate),
u, will be a sum of squared terms in the £;, and the coefficients will be posi-
tive as usual (Eq. V-13) except for one coordinate, call it £ which will have
a negative coefficient. This particular normal coordinate is the rigorous
equivalent of what we have hitherto been loosely calling the reaction co-
ordinate. The coefficient of £2 in u, is negative because the potential sur-
face falls off on both sides of the activated state along this direction (and
this direction only).

From the normal-coordinate analysis we thus obtain 3n — 6 (linear)
or 3n — 7 (nonlinear) ordinary vibrational frequencies »;. The frequency
associated with £ is imaginary because the force constant (twice the coeffi-
cient of £2) is negative. We can therefore construct, in the usual way, from
the v;, a vibrational partition function for the activated complex—except
we omit the factor belonging to the £motion. Thus of the 3n nuclear
degrees of freedom of an activated complex, 3z — 1 can be handled just
as with stable molecules. Only the reaction normal coordinate & requires
special treatment.

Let ¢} represent the vibrational partition function of the activated com-
plex, omitting the &factor. Also, let ¢* = ¢ff¢*q¥q* be the complete
partition function of the activated complex, just as for any polyatomic
molecule—except, again, omitting the ¢ degree of freedom.

We wish next to calculate the number of activated complexes per unit
volume of the system which are in an infinitesimal range d£ of the reaction
coordinate at the activated state. We shall call this number p’ d§, so that
p’ is the number of activated complexes per unit volume and also per unit
length along the reaction coordinate f at the activated state. We want
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the number p’ d£ to include all activated complexes in d¢ irrespective of
the value of p;, the momentum conjugate to £ For the element of phase
space d£ dp; in the coordinate #, the (classical) partition function is

2 %
eI g g, (11-9)

where m* is defined by p; = m*{. It should be noted, incidentally, that
there is always some arbitrariness in defining normal coordinates [see the
constants C; in Egs. (V-12) and (V-14)], and so there is arbitrariness in
m* and £. But combinations of these quantities with physical signifi-
cance (e.g., pf/2m* or dfdp; above) are not arbitrary. Integration of
(11-4) over p; gives the £ partition function for an activated complex in
d¢. The complete partition function for such an activated complex is then

* 1/2
* (21’;‘—2’LT> dt. (11-5)

With the assumption, already mentioned, of equilibrium between re-
actants (say A and BC, for concreteness) and activated complexes,

A + BC 2 (ABC)*, (11-6)
we have, as in Egs. (10-6) and (10-31),

p'dt _ (a*/V)Q@rm*kT/k%)? dt
papBCc (94/7V)(gBc/V)
_ @/ @rm*ET/h*)? dg —BEIRT
(0, /V)(gpe/V)

(11-7)

where ¢’ means, as before, that g, is omitted from g. The quantity AuF is
defined for the process (11-6) by analogy with (11—2) and (11-3). If the
ground electronic states are degenerate, a factor o, /we;(A)we; (BC) must
be included in Eq. (11-7) (v}, being the degeneracy of the activated
complex).

Equation (11-7) provides us with an explicit equation for p’, the num-
ber of activated complexes per unit volume of the system and per unit
length along £ at the activated state. Our next task is to calculate the
number of activated complexes per unit volume which cross the potential
barrier X per unit time in the direction of reaction (left to right in Fig.
11-1). Assuming all of these complexes become products, this is the rate
of the reaction. Consider those activated complexes with values of £ be-
tween £ and £ + df. The fraction of all activated complexes which are
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in this class is, from (11-4),

;2
_m‘f | 2kT dé m* )1/2 —m*é2/2kT
fh de = /+°° —m*E | 2kT dé B (27rkT ¢ dé.

Suppose £ increases as the activated state is approached from the reactant
(left) side in Fig. 11-1. Then an activated complex with § > 0 is pro-
ceeding along the reaction coordinate in the direction required for the
reaction to take place. We note that activated complexes with a given
value of £ > 0 will cross the potential barrier in unit time if they start at
a distance from X not greater than a length of magnitude £. The number of
activated complexes per unit volume and per unit length along # having
values of £ in the interval d¢ is p’f(£) d£. The number of activated com-
plexes per unit volume in the length £ along £ having £ in the interval d¢
is then £p’f(£) d¢. This is the number of complexes per unit volume with
£ in df which cross the barrier per unit time. To get the total number
of complexes per unit volume crossing the barrier per unit time, we have
to integrate £ over the range 0 < £ < + o0

/ o= ()" (22)

kpapsc, (11-8)

which is the defining equation for k. The quantity kpsppc is the rate of
the reaction, and k(T) is called, conventionally, the rate constant. If p’
is obtained from Eq. (11-7), we find

_ KT (/M)
b (V) e/ V)

If only a fraction k (called the transmission coefficient) of complexes pass-
ing the potential barrier in the right direction actually proceed to products,
then « must be inserted as a factor on the right-hand side of Eq. (11-9).
This situation arises, for example, in cases such as Fig. 114, where the
system passes over a barrier (X) but then finds itself in a basin. The sys-
tem may leave the basin (via X’) to form products or return (via X) to
reactants. In the reaction H 4+ Hy; — H, + H, the basin is symmetrical
(if it exists), and it is usually assumed that k = 1/2.

Equation (11-9) furnishes a straightforward statistical-mechanical
recipe for calculating the rate constant k. The potential surface must be
available, however, and this is a very serious practical obstacle. Because
of this, it is difficult to test the theory in a really satisfactory way. Of
course, one does not expect exact agreement between theory and experi-

(11-9)
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ment, as the argument used to deduce Eq. (11-9) is not rigorous—the as-
sumption of equilibrium between reactants and activated complexes being
especially questionable. Also, if a transmission coefficient must be used,
this introduces a somewhat nebulous feature into the theory since k is
in general difficult to evaluate.

For the reverse reaction (11-2), the rate constant is

kT (q:p,/V)e—(Aue*—Aue)/kT

K L 11-10
E NGV (11-10)

The equilibrium constant K for the reaction (11-1) is then
_k _ @/N@/T) —supir it

7 @/ dpe/M) ° ’
in agreement with Egs. (10-6) and (10-31).

11-3 A nonchemical application of the Eyring theory. The fundamental
ideas in Eyring’s theory of the rate of chemical reactions can be and have
been applied to many physical rate processes as well. Merely to illustrate
the possibilities, we consider here a particularly straightforward example,
namely, the rate at which monatomic molecules adsorbed at localized
sites on a surface jump from one site to another. This rate is of course
closely related to the coefficient of surface diffusion. The model we con-
sider is essentially that already discussed in Sections 7-1 and 9-6. We
have a lattice of equivalent surface sites for adsorption, but we need not
specify the lattice type. The number of adsorbed molecules is small, so
that each one behaves independently. The potential in which a molecule
moves is Uo(z, y) [see, for example, Eq. (9-19)]. The potential wells in
Uo(z, y) are the sites for adsorption. The partition function for an ad-
sorbed molecule at a site is given by Eq. (7-3).

To move from a given site to a nearest-neighbor site, a molecule must
pass over a potential barrier of height V. The top of the barrier is the
activated state for this process:

A (site) — A* (top of barrier) — A4 (neighboring site).

Let £ and 7 be the normal coordinates at the activated state, which is a
saddle point in the surface Uy, We take £ as the “reaction coordinate.”
That is, the coefficient of £2 in the expansion of U o in powers of £ and 5
about the activated state is negative, while the coefficient of »? is positive.
Thus a molecule at the top of a potential barrier vibrates in the usual way
in the z-direction (perpendicular to the surface) and also in the 5-direction
(perpendicular to the direction of passage from one site to the other, ie.,

11-3] A NONCHEMICAL APPLICATION OF THE EYRING THEORY 199

perpendicular to £), but not in the Zdirection. We denote the z and 7
vibrational partition functions at the activated state by ¢F and q,,* ’

The partition function for a molecule in the element of length d£ at the
top of a barrier is [see Eq. (11-5)]

1/2
e (QTZ;’CT> dt e~ Uoo+VolkT (11-12)

Let N’ d£ be the equilibrium number of molecules in a length d£ at the
top of barriers, and let N be the equilibrium number of molecules in sites.
Then, from Eq. (10-5), the ratio of these two numbers is

Xi==g (1113

N'dt _ gfgf @rmkT/h®)Y2dg e~ Vol*T  pr#
o 929492 M

where M ¥ /M is the ratio of the number of activated states to the number
of sites (this ratio is two for a square lattice). By the same argument as
in the preceding section (Eq. 11-8),

N (%)1/2 (%) (11-14)

is the number of molecules crossing a barrier (or the number of jumps
being made from one site o another) per unit time, where N’ is given by
Eq. (11-13). We are assuming here that there are no “rebounds”: k = 1.
If 7 is the mean time a molecule spends at a site between jumps, then a
second expression for the number of jumps occurring in unit time is N' /7.
If we set N/7 equal to (11-14), we find

1 kT M*q¥gFe Vol*T

£ = 1) SRR 11-15
T h Mq.q,9. ( )

This is the analog of Eq. (11-9). That is, 1/7 is the rate constant for this
process.
To obtain an estimate of the order of magnitude of 7 in Eq. (11-15),

we set M*/M = 2, ¢gF = g, [as would be the case with Eq. (9-19)],
97 = ¢., and g, = kT/hv, (classical). Then

% — oy VO, (11-16)

This equation has the following approximate interpretation: 2v, is the
number of “attempts” per second the molecule makes to leave its site;
e~ Vo/*T is the probability that any particular attempt will be successful;
and hence 1/7 is the actual number of jumps a molecule makes from one
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site to another per second. If we take v, = 3 X 10 ! sec™), ¥y = 500
cal'mole™, and 7 = 80°K, then e~¥o/*T — 0,043 and 7 = 3.9 X 1011
sec.

Equation (11-15) also provides a theoretical equation for the coeffi-
cient of surface diffusion D, since D is related to 7 (from the theory of
random walks) by D = Ca®/7, where a is the distance between nearest-
neighbor sites and C is a constant of order unity which depends on the
lattice type.

ProBLEMS

11-1. Write out the explicit forms for the partition functions in Eq. (11-9),
assuming the triatomic complex (ABC)* is linear. Insert typical orders of
magnitudes for the masses, frequencies, bond distances, etc., to estimate a
magnitude for k.

11-2. Derive an equation for d In k/dT from k in Problem 11-1.

11-3. Discuss the rate of diffusion of impurity atoms in a monatomic crystal
from the point of view of Eyring’s theory.

11-4. Consider the rate of evaporation of a dilute localized monatomie
monolayer into the gas phase. (a) Use Eyring’s method to derive an equation
for 1/7,, where 7, is the mean time a molecule spends on the surface before
evaporating. (b) Derive the same expression for 1/7, by equating the number of
molecules condensing on the surface per unit area and per unit time with the
number evaporating, at equilibrium:

4 _ (NV/®)
QrmkT)1i2 — 4, '

where p is the equilibrium gas pressure and N/@ is given by Eq. (7-10) in the
limit as 6 — 0.
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CHAPTER 12
IDEAL GAS IN AN ELECTRIC FIELD

Our principal object in this chapter is to deduce the thermodynamic
properties of a very dilute gas in an electric field. In Chapter 15, this study
will be extended briefly to slightly imperfect gases.

In Section 12-1 we give some necessary thermodynamic background,
and in Section 12-2 we develop general statistical-mechanical equations
(canonical ensemble). The material in the first two sections is quite
general and would apply to any fluid (or isotropic) dielectric. The dilute-
gas special case is then considered in Section 12-3. Finally, in Section
124, we discuss a somewhat related problem: a lattice of noninteracting
magnetic dipoles in a magnetic field. This problem turns out to be formally
the same as that of the ideal lattice gas in Chapter 7. The interacting
magnetic dipole case (the Ising model for ferromagnetism) is included
in Chapter 14.

12-1 Thermodynamic background. A number of alternative and equiv-
alent thermodynamic formulations can be devised for a dielectric fluid in
an electric field. Koenig* has given a very full discussion of this subject.
The corresponding treatment for magnetic systems is contained in a paper
by Guggenheim.f-We confine ourselves here to the one particular formula-
tion that is most convenient in the statistical mechanics of gases in an
electric field. For condensed systems, there are some advantages to other
choices.

Consider the parallel plate condenser in Fig. 12-1. The plate surface
charge densities are +o0 and —o, as indicated. The condenser is assumed
to have a large enough plate area so that edge effects can be ignored. The
volume V contains the dielectric fluid whose properties we are interested
in. For simplicity, we take the fluid as one component with N molecules,
but it could as well be multicomponent. The same is true in Section 12-2.
One wall of the fluid container, parallel to the condenser plates, serves as a
piston to vary the volume V. The equilibrium pressure on the piston is p.
The regions between the fluid container and the condenser plates are
evacuated. As a consequence of polarization of the dielectric in the field
of the condenser plates, there are induced surface-charge densities —o’

* F. 0. KoENIG, J. Phys. Chem. 41, 597 (1937).
T E. A. GueeeENHEIM, Proc. Roy. Soc. 155A, 49, 70 (1936).
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