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PnosLnus
10-1. Calculate the fraction of hydrogen atoms ionized at 10,fi)0t when

4 : O.Ot mole.lit¿r-r. (Page 185.)
1G-2. Calculate the fraction of hydrogen molecules dissociated into atoms

when p$, : 0.01 mole'liter-l and (a) T : 1000oK, (b) ? - 5000oK. (Page
185.)

1(}.3. Repeat the argument of Section 10-2, but maximize the partition func-
tion Â(iÍ¡, N a, p, T) [see Eq. (tt-35)] at constant N, p, T inste¿d of Q at con-
stant .lf, 7, ?.

10-4. In the example of Section l0:3, show that

ñffi-ff¿F¡:-ry
Why the negative sign?

10-5. Use the data in Table 8-1 to ealculatn K at 700oK for the reaction
zHI e Hz* Tz.

1G-6. Calcul¿te K at 1000'K for the reaction Iz è 2I (see Section 4-4 and
Table 8-1).

lG-7. Calculate @n for f[2, given thaü v : 3770 cm-l for ED.
1G-8. Calculate @, for If2, given that, for II2, D": 4.722 ev and D6 : 4.4 4

ev..
1G."9. Calculate K for the 'water-gaso reaction aü 1200oK using data in the

têxt.

SuprmupNrenY READTNc

Fowr,na and GuecsNsnnr, Chapter 5,
M¡,rpn and Meron, Chapter 9.
Rusnnnoorn, Chapter 11.

CHAPTER 11

TIIE RATE OT' CHEMICAL REACÎIONS IN IDEAL
GAS MIXÎURES

Strictly speaking, the subject indicated in the chapter title is outside
the scope of this book, which is devoted to equilibrium statistical me-
chanics. However, Eyring's approximate absolute reaction rate theory
has a quasi-equilibrium foundation: it is based on an application of the
chemical equilibtium theory of the preceding chapter. For this reason,
and because of its importance, it seems appropriate to include an account
of the Eyring theory in the present work. But the treatment we give will
be very brief, and we shall not colsider any detailed special cases. The
reâder should consult the book by Glasstone, Laidler, and Eyring (see
the S¡rpplementary Reading list) for further details.

More exact approaches to this problem r¡rill not be discussed here, since
they cannot be put in quasi-equilibrium form.

An example of a nonchemical application of E¡rring's theory is presented
in Section l1-3: the surface diffusion of a dilute, localized monolayer.

l1-l Potential zurfaces. There are two distinct stages in the Eyring
theory. The first is the purely quantum-mechanical one of calculating the
ground-state electronic energy surface (potential surface, for short) for
the reaction, and the second is the statistical-mechanical calculation of
the reaction rate. This division is the same as that which we have en-
countered in calculating the thermodynamic functions of, say, an ideal
polyatomic gas (Chapter 9). In this latter problem, we first have to find
the potential surface of the molecule by quantum mechanics (or obtain
equivalent information empirically from spectroscopy). This surface
(see Section 9-1) deterrnines the equilibrium structure of the molecule,
the moments of inertia, the vibrational force constants and normal co-
ordinates, and the depth of the potential well in the surface relative, say,
to separated atoms as zero. With this information, we can then turn to the
statistical-mechanical problem of deducing the therrnodynarric functions.

We discuss the potential-surface part of the ¡ate problem in this section,
and the statistical-mechanical parü in the next section.

For ease of visualization, let us consider a hypothetical one-dimensional
reaction

A + BC ---> AB I C. (11-1)

Three atoms and (in one dimension) three nuclear coordinates are in-
189
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F¡a. 11-1. Potential surface (øu) in the form of a contour diagram for ah-ypothetical one-dimensional reactión ,+ I AC --.48 + A. Th.;-;*b.; ""the contours are values ol u"inarbitrary units. ¡4v ¡¡uruuçrÞ

volved' one coordinate is concerned ìÃ'ith the cente¡ of mass and is there-fore uninteresting for the above process. The other two coor¿inatãs ae_terrrine the configuration of the three nuclei rerative to each oinãi 1ru"Appendix V). For example, we migbt choose for these two coordinahsìheinternuclear distances ral aîd, rqc. For given values of r¡s and rssthe ground-state electronic energy u"(r¿a,-rsò is calculafuã. f,ro* ,large number of such values of r¿B àndrac, oru ,uo construct a potential
surface in the form of a c-ontour diagram, which in a typical .rr" JÁntappear as in Fig. 1r-1. The valley at the upper left corlåsponas to À'¿atom and a diatomic BC morecule. (The curvature of the-surface at thebottom of and perpendicular to the valley determines the vibrationar
ft"qy"lg{ n BC; the depth of the valley is a measure of the energy of thebond BC.) The valley at the lower righi corresponds to the staæïn i C.

'a+ x
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(c)

Frc. 11-2. (a) Potential energy (ø,) along the reaction path in Fig. 11-1.
Note the poüential barrier. (b) Corresponding curve from tr'ig. 11-3. Note the
minimum in ø" (stable molecule, ABC). (c) Corresponding curve from Fig. 1l-4.

The high plateau is ,4 * B + C. When reaction (11-1) occurs, the lowest
possible path from reactants (A + BC) to products (AB + C) is the
dashed line in Fig. 11-1. The highest point on this path is marked X in the
figure. This is the "activated state," and the triatomic system A, B,C
at this point is referred to as an "activated complex," denoted by (ABC)*.
If one plots the potential energy u" along the dashed path of Fig. 11-1
as a function of the distance along the path (called the 'teaction co-
ordinate"), one obtains a curve as in Fig. Il-2(a). The height Aø"+ of the
potential energy bamier rvhich must be overcome is called the "activation
energy. "
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Frc. 11-3. Potential surface (rz") in the form of a contour diagram in one-
dimensional case where stable molecule ABC is formed.

For the reverse reaction,

AB+C-+A{BC, (tI-2)

( rBC

Fro. l1-4. Potential surface (ur) in which a basin oceurs between two
potential barriers.

the reaction path in Fig. 11-1 must be reversed in direction. In this
example the activated state and complex (X in Fig. 11-1) are the same
for forward (11-1) and reverse (11-2) reactions. Let

A'tt": u"(AB + C) - u"(A I BQ' (11-3)

This is Au" for the reaction as written in (11-1) and has the same meaning
â,s A€¿1 in Eq. (lG-32). In Fig. 11-1 it is determined by the difrerence in
levels of the two valleys. In Figs. l1-1 and ll-2(a), Aø, is negative. If
Âø,+ is the activation energy for the forward reaction, AuT - À2, is the
activation energy for the reverse reaction.

In a real (three-dimensional) triatomic reaction we would need a con-
tour diagram in threedimensional @ta, rac, r¿a) instead of two-di-
mensional spåce (or a surf¿ce in four-dimensional space). But the general
concepts introduced above for a hypothetical one-dimensional reaction
remain the sa,rre. Incidentaþ, it should be noticed that linea¡ configura-
tions of A, B, C are included in the potential zurface (in fact, activated
complexes in triatomic reactions are usuâlly linear), and we recall that
linear molecules have four, not three, vibratioual coordinates. Howe¡¡er,
this is not contradictory to the statement that ø" is a function of the three
variables raB, rBc, ønd r4s only, for two of the normal modes in a linear
molecule are degenerate (i.e., of the same frequency). For example, the
positions of the atoms in the two degenerate modes of CO2 [shown pre-
ceding Eq. (9-3)l are expressible by the same sets of values of. r¿p, reç,
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a\d, r4ç (the triangle ABC is mereþ ¡otated g0o in going from one mode
to the other).

In contrast to Fig. 11-1, we show in Fig. ll-B what a typical (one_
dimensional again) potential surface might look like in the eoent that á,
B, and C formed a stable molecule ABC. The potential well in Fig. ll_B
is characteristic of a stable molecule. The equilibrium molecular geõmetry
or aBC is determined by the location of the bottom of the well, and the
vibrational motion of the molecule is determined by the shape of the well
in the neighborhood of the minimum [see also Section 9-1 anã Eq. ff-f)].A plot of. u" as a function of distance along the lowest possible path from
the upper left valley to the lower right valley in Fig. rl-B would appear
as in Fig. 11-2(b). This should be contrasted with Fig. 11-2(a).

Another type of potential surface is shown in Fig. 11-4. A basin is
situated between two potential barriers, x and x'. The potential energy
as a function of the reaction coordinate is shown in Fig. ll-2(c). a basin
may possibly occur,* for example, in the reaction

II*Hz+Hz*H.
11-2 Absolute rate tleory. as a concrete example, let us return to the

reaction (11-1) and discuss it now as a real threçdimensional reaction.'we suppose that the potential surface is of the general type shown in
Fig. 11-1; that is, the potential 'profile,, has one potential barrier, as in
Fig. 11-2(a).

The fundamental assumption of the Eyring theory is that, during the
course of the reaction (11-1), molecular configurations couesponding to
the upper left valley in Fig. 11-1 (i.e., reactant molecules) are in therrno-
dynamic equilibrium with molecular configurations corresponding to the
neighborhood of the activated state x in Fig. lt-l (i.e., activated com-
plexes). This is an assumption which cannot be rþrousþ correct, but
which is probably rather accurate in many cases. This aszumption of
equilibrium between reactant molecules and activated complexes makes it
possible for us to use the methods of the preceding chapter on chemical
equilibria to deduce the concentration (deûned below) ol activated com-
plexes. From this knowledge, ¿s we shall see, we can then calculate the
number of reactants passing over the barrierr from upper left to lower
right, per unit time and per unit volume of the system. This is the desired
reaction rate.

an activated complex is very much like an ordinary stable molecule.It has a definite mass (za¿ * ms * ms in this example) and a definite
* 
Þ^ee G-¡,{ssroNp, LÂror¡R, øn4_ Ernrr.ra (Supplementary Reading list},p. 108, and R. E. Wpsro¡r, Jn., J. Chem. phys.3f, 892 (1959).'
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nuclear configuration (corresponding to the position of the X in Fig. l1-1
at the top of the potential barrier). l'his configuration deterrnines the
moments of inertia and the symmetry number. Thus we can immediateþ
write (aszuming the potential surface is available) the translational and
rotational partition functions for an activated complex, iust as we did in
Chapter 9 for a stable molecule.

Furthe¡more, we can carry out a normal-coordinate analysis for the
vibrational frequencies, based on the shape of the potentiar surface in the
neighborhcod of the activated state. rf the activated complex is linear,
there will be 3n - 5 normal vibrational modes, otherwise there will be
3n - 6. Thg activated state is located at a saddle point in the potential
surface. That is, although the activated state is a maximurq point along
the reaction coordinate, it is a minimum in other directions (e.g., in Fig.ll-1, in the direction perpendicular to the reaction coordinat-ej. This
feature will appear automatically in the normal-coordinate analysis when
the potential energy ø, is expressed in terms of the normal coordinates
f¿ [see Eq. (V-13)]. Necessarily (i.e., by definition of a normal coordinate),
ø, will be a sum of squared terms in the !¿, and the coefficients will be posi-
tive as usual (Eq. Y-Lï) eacept for one coordinate, call it f, which will have
a negative coeffcient. This particular normal coordinate is the rigorous
equivalent of what we have hitherto been loosely calling the reaction co-
ordinate. The coefficient of !2 in z, is negative because the potential sur-
f.ace falls of on both sides of the activated state along this direction (and
this direction only).

From the normal-coordinate analysis we thus obtain 3ø - 6 (linear)
or 3n - 7 (nonlinear) ordinary vibrational frequencies y¿. The frequency
associated with f is imaginary because the force constant (twice the coeffi.-
cient of ¿2) is negative. 'We can therefore construct, in the usual way, from
the v¿, a vibrational pa,rtition function for the activated complex---except
we omit the factor belonging to the f-motion. Thus of the Bæ nuclear
degrees of freedom of an activated complex, Bn - | can be handled just
as with stable molecules. only the reaction normal coordinate f requires
special treatment.

Let gj represent the vibrational partition function of the activated com-
plex, omitting the {-factor. Also, let q* : qf ql qjg,* b" the complete
partition function of the activated complex, just as for any polyatomic
molecule-except, again, omitting the { degree of freedom.'We wish next to calculate the number of activated complexes per unit
volume of the system which are in an infinitesimal range df of the reaction
coordinate at the activated state. TVe shall call this number p' ilf, so tbat
p' is the number of activated complexes per unit volume and also per unit
length along the reaction coordinate Ê at the activated state. we want
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the number p' ill to include all activated complexes in d{ irrespective of
the value of p¡, the momentum conjugate to ¡. For the eiemeni of phase
space df dpr in the coordinate f, the (classical) partition function is

!u"-ol,r*o, ittdpt, (11-4)

where z¿* is defined by pr : m*(, hshould be noted, incidentally, that
there is always some arbitrariness in defining normal coordinates [see the
constants C" in Eqs. (V-12) and (V-14)1, and so there is arbitrariness in
tn* and, f. But combinations of these quantities with physical signifi-
cance (e.g., O!/Zm* or il{itp¿ above) are not arbitra^ry. Integration of
(11-4) over p¡ gives the f partition function for an activated complex in
dÊ. The completc partition function for such a¡r activated complex is then

o* (yt!!)''' at. (u_5)

With the aszumption, already mentioned, of equilibrium between re-
actants (say .r{ and. BC, for concreteness) and activated conplexes,

A + BC è (ABC)*, (11-6)

we have, as in Eqs. (1G{) and (1O-3f),

I d,Ê _ (q+/Y)(hrn*tcT/h2)rtz dËp¿pac (q¿/V)(qac/V)
ttz dË e-^ulth?, (ll_Z)

where y' means, as before, that q" is omitted from g. The quantity Aø"+ ¡u
defined for the process (11-6) by analogy with (11-2) and (lt-B). If the
ground electronic states are degenerate, a factor a!r/o4t(A)o¿1(BC) must
be included in Eq. (11-7) (co"+, being the degeneracy of the activated
complex).

Equation (11-7) provides us with an explicit equation for p,, the num-
ber of activated complexes per unit volume of the system and per unit
length along t at the activated state. Our next task is to calculate the
number of activated complexes per unit volume which cross the potential
barrier X per unit time in the direction of reaction (left to right in Fig.
11-f). Assuming all of these complexes become products, this is the mte
of the reaction. Consider those activated complexes with values of f be.
tween f and É * då. The fraction of all activ¿ted complexes which are

in this class is, from (11-4),

r(Ê) d,Ë : n-'È'tz*t dË / ** \rtz **i2 '^''^
l-ræ,,- *: \';ñF) '--'Ë 

tzhr dt'

suppose f increases as the activated state is approached from the reactant
Qeft) side in Fig. l1-1. Then an activated complex with Ë ) 0 is pro-
ceeding along the ¡eaction coordinate in the direction required for the
reaction to take place. We note that activated complexes with a given
value of É > 0 win cross the potential barrier in unit time if they start at
a distance frorn X not greater than a length of magnitude f. The number of
activated complexes per unit volume and per unit length along f having
values of É in the interval dÊ is p'fþ) dÊ. The number of activated com-
plexes per unit volume in the length f along { having Ë in the interval df
is then tp'l(Ð dt. This is the number of complexes per unit volume with
t in dt which crpss the barrier per unit time. ?o get the total number
of complexes per unit volume crossing the barrier per unit time, we have
to integrate f overthe range 0 ( É ( * oo:

c, f" u<ttdÊ,: p,(#),,,Çq)
= kp¿.pac, (11-8)

which is the defining equation for k. The quantity kp.tpac is the rate of
the reaction, and k(7) is called, conventionally, the rate constant. If p,
is obtained from.Eq. (f 1-7), we find

k:ry q/y){:z**: hTJvWãw' (lr-e)

If only a fraction r (called the transmission coefficient) of complexes pass-
ing the potential ba¡rie¡ in the right di¡ection actually proceed to products,
then r must be inserted as a factor on the right-hand side of Eq. (ll-g).
This situation arises, fòr example, in cases such as Fig. l1-4, where the
system passes over a barrier (X) but then finds itself in a basin. The sys-
tem may leave the basin (via X') to form products or return (via X) to
reactants. In the reaction H + Hz + H¿ { H, the basin is s¡nnmetrical
(if it exists), and it is usually assumed that x : l/2.

Equation (11-9) furnishes a straightforward statistical-mechanical
reeipe for calculating the rate constant k. The potential surface must be
available, however, and this is a very serious practical obstacle. Because
of this, it is difficult to test the theory in a really satisfactory way. Of
course, one does not expect exact agreement between theory and experi-
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ment, as the argument used to deduce Eq. (11-g) is not rþorous-the as-
sumption of equilibrium between reactants and activated complexes being
especially questionable. also, if a transmission coefrcient must be used,
this introduces a somewhat nebulous feature into the theory since r is
in general difficult to evaluate.

For the reverse reaction (LI-z), the rate constant is

k, : kT (q*t/V)e-(^ul-^ue'tkr:T-adaJm@n;' (11-10)

The equilibrium constant K for the reaction (11-1) is then

r:5 :ldfs,1!)gb/,\¿ "-Ã,uetbr, (11-11)k' (ø'"/V)(ø!r"/V)

in agreement with Eqs. (1GS) and (10-91).

11-3 A nonchemical application of the Eyring theory. The fundamental
ideas in Eyrìng's theory of the rate of chemical reactions can be and have
bcen applied to many physical rate processes as we[. Merely to illustrate
the possibilities, we consider here a particurarþ straightforward example,
namely, the rate at which monatomic molecules adsorbed at localiied
sites on a surface jump from one site to another. This rate is of course
closeþ related to the coeffcient of surface diffusion. The model we con-
sider is essentially that already discussed in sections z-l and g-6. we
have a lattice of equivalent surface sites for adsorption, but we need not
specify the lattice type. The number of adsorbed molecules is small, sothat each one behaves independently. The potential in which a moleáde
11oves is Uo@,g) [see, for example, Eq. (S-19)]. The potential wells in
uo@,y) are the sites for adsorption. The partition function for an ad-
sorbed molecule at a site is given by Eq. (Z-B).

To move from a given site to a nearest-neighbor site, a molecule must
pass over a potential barrier of height Ize. The top of the barrier is the
activated state for this process:

á (site) ---+ ,4.* (top of barrier) -r á (neighboring site).

Let f and 1 be the normal coordinates at the activated state, which is a
saddle point in the su¡face ue. we take f as the "reaction coordinate.',
That is, the coefficient of. {2 in the expansion of Us in powers of f and aabout the activated state is negative, while the coefficienl of q2 is pãsitive.
Thus a molecule at the top of a potential barrier vibrates in the usual wayin the ¿-direction (perpendicular to the surface) and also in the 4-direction(perpendicular to the direction of passage from one site to the åther, i.e.,
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perpendicular to f), but not in the þdirection. TV'e denote the a and 7vib¡ational partition functions at the activated state by qj and qf,.
The partition function for a molecule in the element of length ã¡ at the

top of a barrier is [see Eq. (11-5)]

útf (?T#)ttz d¿e-<aoo+vott*r. (n-12)

Let .l['df be the equilibrium number of molecules in a length df at the
top of ba.rriers, and let tr/ be the equilibrium number of molecures in sites.
Then, from Eq. (10-5), the ratio of these two numbers is

N' d,t : qt qf QnmkT /h2)tt2 dt e-Yotkr tÍ +
-¡rr- : 8ø8uez x'h- ' (11-13)

where M+ /M is the ratio of the number of activated states to the number
of sites (this ratio is two for a square lattice). By the same argument as
in the preceding section (Eq. ll-8),

*,(#ò''' (#) (11-,4)

is the number of molecules crossing a banier (or the number of jumps
being made from one site to another) per unit time, where N, is given by
Eq. (11-fB). 'W'e are assuming here that there are no ,.rebounds,i K: l.
If ¡ is the mean time a molecule spends at a site between jumps, then a
second expression,for the number of jumps occurring in unit time is -ll/r.If we set N/r eqtal to (11-14), we find

\ : ry. M+qlqn+'-votkr;:T --W,'' (11-15)

This is the analog of Eq. (11-9). That is, l/r is the rate constant for this
process.

To obtain an estimate of the order of magnitude of ¡ in Eq. (ll-15),
we set M+/M:2, qf : Çs las would be the case with Eq. (9-19)],
Qî : 8,, and g, : hT/hv" (classical). Then

I - o', ^-Ys!hri: zv,e -' '- . (11-16)

This equation has the following approximate interpretation: 22" is the
nu1nþpl of "attempts" per second the molecule makes to leave its site;
e-votkr is the probability that any particular attempt will be successful;
and hence 1/r is the actual number of jumps a molecule makes from one
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site to another per second. ff we take y, : B X 1011 sec-l, Zo : 500cal.mole-l, and, T: 80"K, lh"n "-volh": 0.048 and r: á.S X fO-tt
sec.

Equation (11-15) also provides a theoretical equation for the coefr-
cient of suface diffusion D, since D is related to r (from the theory of
random walks) by D: cø2/r, where ø is the distance between nea^iest-
neighbor sites and c is a constant of order unity which depends on the
lattice type.

PnosLpMs
11-1. write out the explicit forms for the partition functions in Eq. (11-g),

a.ssuming the triatomic complex (aBC)* is linear. rnsert typical àrd".u ofmagnitudes for the mrxrses, frequencies, bond distances, etc,-to estimate a
magnitude for k.

11-2. Derive an equation for illnk/dT Íromk in problem l1_1.
11-3. Discuss the rate of difrusion of impurity atoms in a monatomic crystalfrom the point of view of Eyring,s theory.
1l-4. consider the rate of evaporation of a dilute localized monatomic

monolayer into the gas phase. (a) use Eyring's method to derive an equation
î.or l/q, where ¡' is the mean time a molecule spends on thè surface before
evaporating. (b) Derive the same expression Íor l/r"by equating the number of
molecules condensing on {he surface per unit ureu 

"oá 
pãr uniitime with the

number evaporating, at equilibrium :

p (N/o,)6@rtt: -;:-'
_yh9re f is the equilibrium gas pressure aú. N/G is given by Eq. (Z-10) in thelimit¿s0+0.
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CIIAPTER 12

IDEAL GAS IN ÄI{ ELECTRIC FIELD

Our principal object in this chapter is to deduce the thermodynamic
properties of a very dilute gas in an electric field. In Chapter 15, this study
will be extended briefly to slightly imperfect gases.

In Section 12-1 we give some necessa.ry thermodynamic background,
and in Section l2-2 we develop general statistical-mechanicat equations
(canonical ensemble). The material in the first two sections is quite
general a¡rd would apply to any fluid (or isotropic) dielectric. The dilute.
gas special case is then considered in Section 12-3. Finally, in Section
124, we dissuss a somewhat related problem: a lattice of noninteracting
magnetic dipoles in a magnetic field. This problem turns out to be formally
the same as that of the ideal lattice gas in Chapter 7. The interacting
magnetic dipole case (the Ising model for ferromagnetism) is included
in Chapter 14.

l2-1 thermodynamic background. A number of alternative and equiv-
alent thermodynamic forrnulations can be devised for a dielectric fluid in
an electric field. Koenig* has given a very full discussion of this subject.
The corresponding treatment for magnetic systems is contained in a paper
by Guggenheim.t-We confine ourselves here to the one particular formula-
tion that is most convenient in the statistical mechanics of gases in an
electric field. For condensed systems, there are some advantages to other
choices.

Consider the parallel plate condenser in Fig. l2-1. The plate surface
charge densities aîe +o and, -o, as indicated. The condenser is assumed
to have a large enough plate area so that edge efrects can be ignored. The
volume 7 contains the dielectric fluid whose properties we are interested
in. For simplicity, we take the fluid as one component with .lÍ molecules,
but it could as well be multicomponent. The same is true in Section 12-2.
One wall of the fluid container, parallel to the condenser plates, serves aÁr &
piston to vary the volume I¡. The equilibrium pressure on the piston is p.
The regions between the fluid container and the condenser plates are
evacuated. As a consequence of polarization of the dielectric in the field
of the condenser plates, there are induced surface-charge densities -ø'

* F. O. Koorvra, J. Phys. Chcm.4l,597 (1937).
I E.A.Guccnrneru, Proc. ßoy. Soc. 1554,49, 70 (1936)
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