
Solutions to home work week 7

1. • The particles interact with each other through harmonic potentials. You

can consider the 3N generalized coordinates qi the normal modes of

our 3N -dimensional systems. In general normal modes are linear com-

binations of atomic displacements (i.e xj → xj +∆j) and are indepen-

dent to third order in the potential. The Hamiltonian of such systems

is
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The partition function for this system is
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Note that here we do not use the usual trick for the (non-generalized)

Cartesian momenta: dpxdpydpz = 4πp2dp, but we integrate over all

3N dpi independent (generalized) momenta instead. Both integrals can

be solved analytically with the help of equation A.31 on page 322 of

the book:
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The average energy 〈E〉 = − ∂
∂β lnZ:

〈E〉 = − ∂
∂β [− lnN !− 3N lnh]
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• The potential energy and kinetic energy are the first and second term

in the previous expression, but we will derive them formally here. The

expectation value of the kinetic energy is given as the sum of the prob-

abilities of particle i having kinetic energy p2i /2mi. Since that prob-

ability is the Boltzmann factor divided by the partition function, we

have:
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3N∑
i=1

∫ p2i
2mi

e
−β p2i

2mi dpi∫
e
−β

p2
i

2mi dpi

(5)

where we divided the integrals over the momenta of all other particles

j 6= i and the integrals over the generalized coordinates of all parti-

cles, including i. Both nominator and denominator can be evaluated

2



analytically with the help of equation A.31:

〈Ekin〉 =
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• The potential energy is obtained as:

〈Epot〉 =
3N∑
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where we again divided by the integrals of the other generalized mo-

menta (i 6= j and the integrals of all momenta. This can also be worked

out analytically.
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Thus, on average, the is 1
2kT of energy per harmonic degree of free-

dom. This is the equipartition theorem.

2. The reaction A→ B was discussed in the lecture, but it is always a good ex-

ercise to repeat the steps. We assume that the molecules behave as a perfect

classical gas, both in state A and B. Thus, if there are NA molecules in state
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A and NB molecules in state B, the free energy is

F = −kT ln[Z] = −kT ln[ZA × ZB] (9)

with

ZA =
V NA
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) 3
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and
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Converting an small amount of A into B, we have for the change in free

energy
dF

dNA
dNA = −kT d

dNA
lnZdNA (12)

Because the total number of molecules remains constant

dNA + dNB = 0 (13)
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= −1 (14)
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We can thus re-write the expression for the derivative in total free energy as:
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where [A] = NA
V and Z1 the partition function of a single ideal gas molecule:

Z1 = V (2πmkT
h2

)
3
2 . If we call f0A = Z1Z

int
A /V and −kT ln f0A the standard

’chemical potential’ per molecule, so that when multiplied by Avogadro’s

number, we get µ0A, the standard chemical potential of A, we can rewrite the

derivative of the free energy as

∂F

∂NA
= −kT ln

[B]

[A]
− fB + fA (17)

In equilibrium, nothing changes anymore, so that ∂F
∂NA

= 0. Thus,

fB − fA = −kT ln
[B]

[A]
(18)

Or, after multiplication with Avogadro’s number

∆F 0 = µ0B − µ0A = −RT ln
[B]

[A]
(19)
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