
Solutions to home work week 5

1. • The partition function for a single particle can be derived by consider-

ing that it is a particles in a box with wavelengths in three dimensions:

λx = 2Lx
nx

, λy =
2Ly

ny
, λz = 2Lz

nz
. Using De Broglie relation:

px =
h

λx
=
nxh

2Lx
(1)

we can "simply" count the number of momentum states in an interval

p + dp. First, we realise that the momentum space "volume" of one

momentum state (with nx = ny = nz = 1) is h3

8V . Then the den-

sity of momentum states f(p) in the interval p + dp is given by the

"momentum-volume" in the positive octant of a sphere with diameter p

f(p)dp =
8V

h3
4π

8
p2dp =

V

h3
4πp2dp (2)

Thus the single-particle partition function

Z1 =
∫∞
0

V
h3

4πp2e−β
p2

2mdp

= V
h3

4π 2m
4β

√
2mπ
β

= V
(
2πmkT
h2

) 3
2

(3)

For the many-particle partition function of the mono-atomic ideal gas,

we must take into account that the particles are indistinguishable. As

discussed in the lecture and in chapter 7 of the book, we achieve this

by dividing by N ! and take the single particle partition function to the
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N th power:

Z =
1

N !
ZN1 =

V N

N !

(
2mπkT

h2

) 3N
2

(4)

• The average energy is given by

〈E〉 = − ∂
∂β lnZ

= − ∂
∂β

[
ln V N

N !

(
2πm
h2β

) 3N
2

]

= − ∂
∂β

[
N lnV − lnN ! + 3

2N ln 2πm− 3
2N lnh2 − 3

2N lnβ
]

= 3
2NkT

(5)

• Heat capacity for ideal gas is CV = ∂U
∂T = ∂〈E〉

∂T . Thus, 3
2Nk. Clearly

the heat capacity should level off to zero near 0 K. This is not the case,

so the classical approximation that there is at most one particle in an

energy level breaks down. Instead, near 0 K, all particles occupy the

ground state energy level!

• For the entropy of the ideal mono-atomic gas we write (equation 2.35):

S = 〈E〉
T + k lnZ

= 3
2Nk + kN lnV − kN lnN + kN

+3
2N ln 2πmk

h2
+ 3

2N lnT

(6)

where we used the Stirling approximation, lnN ! = N lnN−N , which

is valid for large N . If T goes to zero, the entropy goes to minus

infinity, which is not correct, obviously. At zero K, all particles are in
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their energetic ground states. There is thus only one microstate, hence

the entropy should be zero.

• The Helmholtz free energy is defined as F = −kT lnZ (chapter 2).

• A relation between pressure and partition function can be obtained

from the fundamental thermodynamic relation (eq. 4.12), which was

derived in the lecture. From it, we derived that p = −∂F
∂V . Thus, the

pressure is given by

p = kT ∂
∂V lnZ

= kT ∂
∂V

[
N lnV − lnN ! + 3

2N ln
(
2πmkT
h2

)]

= kT N
V

(7)

From this results follows immediately the equation of state of an ideal

gas: pV = NkT .

2. • To compute the change in entropy when the gas expands, we use macro-

scopic thermodynamics first. Using the equation of state of the ideal

gas and the fact that internal energy does not change for a reversible

expansion at constant temperature:

dU = 0

= dQ+ dw

= TdS − pdV

(8)
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we can write

dS = p
T dV

= kN
V dV

(9)

To get the entropy change we integrate

∆S =
∫ S2

S1
dS

= Nk
∫ V2
V1

1
V dV

= Nk ln V2
V1

(10)

If the volume doubles, the result is ∆S = Nk ln 2

• Both gasses double their volume, so that the total change in entropy is

∆SA + ∆SB = (NA +NB)k ln 2

• If we substitute NB by NA in the expression above, we would get

∆S = (2NA)k ln 2. However, this cannot be correct, because if we

were to put the wall back, we’d have the same situation as before! Thus,

the entropy should intuitively not increase, but remain the same!

• If we would have started from the partition function instead, we’d have

gotten the correct answer. The partition function before removing the

wall is

Z1 = Z(NA, V, T )× Z(NA, V, T )

= V NA

NA!

(
2πmkT
h2

) 3
2
NA × V N

A
NA!

(
2πmkT
h2

) 3
2
NA

= V 2NA

(NA!)2

(
2πmkT
h2

)3NA

(11)
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After removing the wall, the partition function is

Z2 = Z(2NA, 2V, T )

= (2V )2NA

(2NA)!

(
2πmkT
h2

)3NA

(12)

The entropy difference is given by

∆S = S2 − S1

= 〈2E〉
T + k lnZ2 − 2 〈E〉T − k lnZ1

= k ln Z2
Z1

= k ln (2V )2NA (NA!)2

(V )2NA (2NA)!

= 2NAk ln 2V − 2NAk lnV + 2k lnNA!− k ln(2NA)!

= 2NAk ln 2 + 2kNA lnNA − 2kNA − 2NAk ln 2Na + 2kNA

= 2NAk ln 2− 2NAk ln 2 = 0

(13)

where we again used the Stirling approximation. Because we took into

account the indistinguisibility of the gas particles in the partition func-

tion (by dividing through N !), the entropy change is zero, as it should

be.
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3. The partition function of N interacting classical particles can be written as:

Z =
1

h3NN !

∫
..

∫
e
−β
[∑

i

p2i
2mi

+
∑

i

∑
j v(xi,xj)

]
dp1dp2..dpNdr1dr2..drN

(14)

where bold symbols indicate vectors, not magnitudes, i.e.:

dpdr = dpxdpydpzdxdydz (15)

The exponent can be split into momentum dependent and position dependent

terms:

Z =
1

h3NN !

∫
e
−β
∑

i

p2i
2mi dp1dp2..dpN×

∫
e−β

∑
i

∑
j v(xi,xj)dr1dr2..drN

(16)

using that
∫
dp = 4πp2dp, we can further simplify:

Z =
1

N !
ΠN
i

∫
4π

h3
p2e
−β p2i

2mi dpi ×
∫
e−β

∑
i

∑
j v(xi,xj)dr1dr2..drN (17)

where the ΠN
i symbol indicates we take the product of N terms, with 1 ≤

i ≤ N . Recognizing that the first part is the translational partition function

of a classical gas with N particles (equations 7.18 - 7.20 in the book, but

without the V N term!) we can write:

Z =
1

V N
ZN1

∫
e−β

∑
i

∑
j v(xi,xj)dr1dr2..drN (18)

We call the integral over positions the configurational partition function Q.

Because the translational partition function Ztr can be evaluated analytically,

i.e.

Ztr =
1

N !
ZN1 =

V N

N !

(
2πmkT

h2

) 3
2
N

(19)
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the major challenge is to evaluate the high-dimensional integral of the con-

figurational partition function.

Q =

∫ ∫
e−β

∑
i

∑
j v(xi,xj)dr1dr2..drN (20)

Already for simple pair-wise potentials v(xi, xj) it is impossible to com-

pute this integral analytically. Instead, any practical application of statisti-

cal mechanics for computing thermodynamic quanties, such as drug binding

affinities, reaction free energies, etc., requires (severe) approximations. In

the lectures we will discuss two common approaches, namely Metropolis

Monte Carlo method and molecular dynamics.
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