
Solutions to home work week 3

1. The enery levels of the harmonic oscillator are

En = h̄ω(n+
1

2
) (1)

with integer quantum number n ≥ 0. Because each level is non-degenerate,

the partition function is

Z =

∞∑
n=0

e−βEn = e−
1
2
βh̄ω

∞∑
n=0

e−βh̄ωn = e−
1
2
βh̄ω

∞∑
n=0

(e−βh̄ω)n (2)

with β = 1
kT . Because 0 < exp[−βh̄ω] < 1, we can use the result

∞∑
n=0

xn =
1

1− x
(3)

Thus, the partition function of the quantum harmonic oscillator is

Z =
e−

1
2
βh̄ω

1− e−βh̄ω
(4)

With Z we can compute

• the entropy

S = 〈E〉
T + k lnZ

= − 1
T

∂
∂β lnZ + k lnZ

= − 1
T

∂
∂β

(
−1

2βh̄ω − ln[1− e−βh̄ω]
)

+ k
(
−1

2βh̄ω − ln[1− e−βh̄ω]
)

(5)
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Using the result for 〈E〉 from the homework 3, we get

S = h̄ω
2T

(
1+e−βh̄ω

1−e−βh̄ω

)
− kβω

2 − k ln
[
1− e−βh̄ω

]

= h̄ω
2T

[
1+e−βh̄ω

1−e−βh̄ω −
1−e−βh̄ω
1−e−βh̄ω

]
− k ln

[
1− e−βh̄ω

]

= −k ln
[
1− e−βh̄ω

]
+ h̄ω

T
e−βh̄ω

1−e−βh̄ω

(6)

Figure 1 is a plot of the Entropy as a function of temperature.

Figure 1: Entropy (y-axis) of a single quantum harmonic oscillator as a function of

temperature (x-axis)
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• The heat capacity at constant volume :

CV = ∂U
∂T = ∂〈E〉

∂T

= ∂
∂T

(
h̄ω
2 + h̄ωe−βh̄ω

1−e−βh̄ω

)

= ∂
∂β

(
h̄ω
2 + h̄ωe−βh̄ω

1−e−βh̄ω

)
dβ
dT

= (h̄ω)2e−βh̄ω

(1−e−βh̄ω)kT 2 + (h̄ω)2e−2βh̄ω

(1−e−βh̄ω)2kT 2

=
(h̄ω)2(e−βh̄ω−e−2βh̄ω+e−2βh̄ω)

(1−e−βh̄ω)2kT 2

=
(h̄ω)2 exp[− h̄ω

kT
]

(1−exp[− h̄ω
kT

])2kT 2

(7)

Figure 2 is a logarithmic plot of the heat capacity for the oscillator.

Figure 2: Heat capacity (y-axis) of a single quantum harmonic oscillator as a func-

tion of temperature (x-axis)

To get the entropy as a function of temperature above, we could also
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Figure 3: Helmholtz free energy (y-axis) of a single quantum harmonic oscillator

as a function of temperature (x-axis)

have also use this result:

S =

∫ T

0

1

T

∂U

∂T
dT (8)

but this is a more nasty integral.

• The Helmholtz free energy:

A = −kT lnZ = − 1
β lnZ

= − 1
β

(
−1

2βh̄ω − ln[1− e−βh̄ω]
)

= h̄ω
2 + β

ln [1− e−βh̄ω]

= h̄ω
2 + kT ln[1− exp[− h̄ω

kT ]

(9)

Figure 3 is a plot of the Helmholtz Free energy.

To get the entropy, we could have also used

S = −∂A
∂T

(10)
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There are thus various ways to compute the variables.

2. First to get the angular frequency of HD , we need to recover the force con-

stant from the frequencies of HH or DD. We have for the reduced masses of

the three systems: µHH = 8.363 ∗ 10−28 kg; µHD = 1.11488 ∗ 10−27 kg;

µDD = 1.67175∗10−27 kg. From ωHH = 131 THz, we get k = 14.3517Nm−1.

As crosscheck, from ωDD = 93 THz, we get k = 14.459Nm−1. Not to-

tally the same, but close enough. We take the first value and hence correct

slightly the ωDD =92.6 THz. Probably 93 THz was rounded. Anyway, with

k = 14.3517Nm−1, we get for ωHD = 113.5 THz. With these values, we

can compute the partition function of the reactants and products, assuming

the two product HD molecules are distinguishable in our experiment. For

the HH and DD reactants

Zreact =
e−

1
2
βh̄ωHH

1− e−βh̄ωHH
× e−

1
2
βh̄ωDD

1− e−βh̄ωDD
(11)

and Helmholtz free energy

Areact = −kT lnZ = −kT ln

[
e−

1
2
βh̄ωHH

1− e−βh̄ωHH

]
− kT ln

[
e−

1
2
βh̄ωDD

1− e−βh̄ωDD

]
(12)

For the two HD products:

Zprod =
e−

1
2
βh̄ωHD

1− e−βh̄ωHD
× e−

1
2
βh̄ωHD

1− e−βh̄ωHD
(13)

and Helmholtz free energy

Aprod = −kT lnZ = −2kT ln

[
e−

1
2
βh̄ωHD

1− e−βh̄ωHH

]
(14)

To make them indistinguisbable, we need to divide by 2, but we forget about
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that for now and assume we can resolve the molecules.

The free energy difference is thus:

∆A = Aprod −Areact

= 2 h̄ωHD
2 + 2kT ln[1− exp[− h̄ωHD

kT ]

− h̄ωHH
2 − kT ln[1− exp[− h̄ωHH

kT ]

− h̄ωDD
2 − kT ln[1− exp[− h̄ωDD

kT ]

(15)

Figure 4 shows how the reaction free energy depends on temperature.

Figure 4: Reaction free energy (y-axis) as a function of temperature (x-axis)

because the free energy change is postive for all temperatures, the reaction

is not spontaneous and we need to do work on the sytem to make is happen

(i. e., accelerate the molecules).

3. Because a classical harmonic oscillator has continuous energies, we can

write the partition function as

Z =

∫ ∞
−∞

exp[− β

2m
p2 − β

2
mω2x2]dpdx (16)
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Becaue p and x are independent variables, we can cut this expression into a

product:

Z =

∫ ∞
−∞

exp[− β

2m
p2]dp×

∫ ∞
−∞

exp[−β
2
mω2x2]dx (17)

Using the rules for integrals of Gaussian functions from the book (a = β
2m

in the first part and a = βmω2

2 in the second part of the integral), we can do

the integration:

Z =
√

2mπ
β ×

√
2π

mβω2

= 2π
βω

(18)

Note, however, we should have used 1
h as a prefactor of Z, but because we

have not discussed this in the lecture, we leave it out for now. It has to do

with the density of states and the relation with quantum mechanics. Also

without h, Z is not unitless (i.e. now the unit of Z is Js, which is also the

unit of h.

• The entropy is then (using the average energy 〈E〉 = kT from the next

question .... I should have reveresed the order here...)

S = k + k lnZ = k + k ln

[
2π

βω

]
(19)
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• The average energy

〈E〉 = − ∂
∂β lnZ

= − ∂
∂β ln

[
2π
βω

]

= − ∂
∂β (ln[2π]− ln[βω])

= 1
β

= kT

(20)

Thus the average enery is kT . This is an example of the classical

equipartition theory that in equilibrium the available energy is equally

shared between kinetic and potential energy, with 1
2kT per harmonic

term in the Hamiltonian. We will discuss this further in the lecture.

• Finally, the Helmholtz free energy of this system is

A = −kT lnZ = −kT ln

[
2π

βω

]
(21)

Since we also have that S = −∂A
∂T , we could have also obtained the

entropy by differentiation A:

−∂A
∂T

= k ln

[
2πkT

ω

]
+ k (22)
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