
Solutions to home work week 2

1. Because S is a state function, we can choose always the reversible path for

computing the entropy difference. For a reversible heating from 300 K to

320 K at constant pressure we have that

dS =
dQ

T
=
mCpdT

T
(1)

with m the mass of water (1 kg in our example). Integrating both sides

∆S = mCp

∫ T2

T1

1

T
dT = mCp ln

T2

T1
(2)

The heat capacity is so large because of the hydrogen bonding in water.

2. Use that for an ideal gas at constant temperature dU = 0. Thus, upon re-

versible expansion

dQ = dU − dW = pdV (3)

For the entropy change we have

dS = dQ/T =
p

T
dV = R

1

V
dV (4)

Integrating both sides gives the entropy difference in going from V1 to V2:

∆S = R ln
V2

V1
(5)

• no, because entropy is state funtion

• For reversible expansion, the entropy of the environment changes by
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the oposite amount

∆S0 = −∆S = −R ln
V2

V1
(6)

In this case the entropy change of the total system is zero:

∆Stot = ∆S + ∆S0 = 0 (7)

• For irreversible work against the constant external pressure at constant

temperature we have dW = −p0dV , while dU = 0. Thus,

∆Q = p0∆V (8)

so that for the entropy change of the environment

∆S0 = −Q
T

= −po∆V
T0

(9)

because S is a state function, ∆S is the same as for the reversible

process. Thus for the entropy change in the total system we haev that

∆Stot = R ln
V2

V1
− po∆V

T0
> 0 (10)

The inequality follows from fact that the expansion work is maximal

when done reversibly.

3. During the adiabatic expansion (dQ = 0), not only work is done, but also

the temperature changes. Thus, we go from (p1, V1, T1) to (p2, V2, T2) . We

choose again the reversible path. For a reversible process we have that

dU = TdS − pdV (11)
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and for the ideal gas we have that.

dU = CV dT (12)

Isolating dS in equation 11 and using the expression for dU from equation 12

we get:

dS =
CV
T
dT +

p

T
dV (13)

From the equation of state we have that p
T = R

V . Inserting and integrating on

both sides

∆S = CV ln
T2

T1
+R ln

V2

V1
(14)

Thus, to get the entropy change, we need to know both the volume and

the temperature at the end states. We only know the volumes: V1 and V2.

However, in exercise 3 of the previous homework set we derived that for

reversible adiabatic expansion pV γ is a constant. Because we choose the

reversible pathway also now to do the expansion, we may use irreversible

adiabatic expansion!):

p1V
γ

1 = p2V
γ

2 (15)

which we can re-write to

p1V1V
(γ−1)

1 = p2V2V
(γ−1)

2 (16)

Using the equation of state for the ideal gas (pV = RT , assuming one mole

throughout):

RT1V
(γ−1)

1 = RT2V
(γ−1)

2

T1
T2

= (V2
V1

)(γ−1)

(17)
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For the ideal gas we also have that

γ − 1 =
Cp
CV
− 1 =

R

Cv
(18)

Therefore,

∆S = CV ln
(
V1
V2

) R
CV +R ln V2

V1

= −R ln V2
V1

+R ln V2
V1

= 0

(19)

Thus, the reversible adiabatic expansion is isentropic, ∆S = 0. The reason

is that although we increase volume and do work, we also lower the temper-

ature. This is an example of turning all heat into work!

If not reversible, the final temperature will be higher, and hence entropy

increased.

4. At equilibrium, we have that

(
∂SAB
∂VA

)
NA,NB ,EA,EB

=

(
∂SA
∂VA

)
NA,EA

+

(
∂SB
∂VB

)
NB ,EB

dVB
dVA

= 0

(20)

From the fact that the total volume is conserved VA + VB = VAB , we have

that dVA + dVB = 0 and therefore

dVB
dVA

= −1 (21)

Thus, at equilibrium, we have that

(
∂SA
∂VA

)
NA,EA

=

(
∂SB
∂VB

)
NB ,EB

(22)
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We know (intuitively) that the pressures are the same in equilibrium. Fur-

thermore, the units of these derivatives are are JK−1m−3, while pressure has

Jm−3, we apparently need to multiply by temperature:

PA = TA

(
∂SA
∂VA

)
NA,EA

(23)

5. There are two energy levels per nucleus. If we set (arbitrary, but convenient)

the lower level to 0 (E0 = 0 J), the probability for a single nucleus to be in

the higher energy level (E1 = 3 10−20 J) is given by the Boltzmann factor:

p1 =
exp[−βE1]

1 + exp[−βE1]
(24)

where we used that exp[0] = 1. Thus, of the N nuclei, there will be p1N in

the higher energy state with energy E1,

N1 = Np1 =
N exp[−βE1]

1 + exp[−βE1]
(25)

and p0N in the lower energy state with energy E0 = 0:

N0 = Np0 =
N

1 + exp[−βE1]
(26)

With N = 1,000,000 and k = 1.3806 10−23 JK−1, we have at

• 0 K: N0 = 1000000 and N1 = 0

• 10 K: N0 = 1000000 and N1 = 0

• 100 K: N0 = 1000000 and N1 = 0

• 300 K: N0 = 999286 and N1 = 714.

• 1000 K: N0 = 897796 and N1 = 102204

• 10,000 K: N0 = 554111 and N1 = 445889
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In Figure 1 the number of particles in energy levelE1 is plotted as a function

of temperature.

Figure 1: number of particles with energy level E1 as a function of temperature

(x-axis, K)

6. For the quantum harmonic oscillator, the partition function:

Z =
∑∞

n=0 e
−β(n+ 1

2
)h̄ω

= e−
1
2
βh̄ω∑∞

n=0 e
−βh̄ωn

= e−
1
2
βh̄ω∑∞

n=0(e−βh̄ω)n

(27)

Since exp[−βh̄ω] ≤ 1, we can use
∑

i x
n = 1

1−x :

Z =
e−

1
2
βh̄ω

1− e−βh̄ω
(28)

To calculate the ratio between the occupancies (i. e., probabilities) of energy

levels 0 and 1, we use the Boltzmann factors:

pn =
e−(n+ 1

2
)βh̄ω

Z
(29)
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with Z in equation 28. However, we only need the ratio here, i. e.,:

p1

p0
= e−1 1

2βh̄ω

e−
1
2βh̄ω

= e−βh̄ω

(30)

Thus the ratios are at

• 1 K: 0

• 10 K: 0

• 100 K: 0

• 1,000 K: 0.38

• 10,000 K: 0.91

The average energy is obtained as the derivative of the logarithm of the par-

tition function (equation 28) with respect to β;

〈E〉 = − ∂
∂β lnZ

= − ∂
∂β ln

[
e−

1
2βh̄ω

1−e−βh̄ω

]

= − ∂
∂β

(
ln
[
e−

1
2
βh̄ω
]
− ln

[
1− e−βh̄ω

])

= ∂
∂β

1
2βh̄ω + ∂

∂β ln
[
1− e−βh̄ω

]
= 1

2 h̄ω + h̄ωe−βh̄ω

1−e−βh̄ω

(31)

Thus, irrespective of temperature, the energy always contains the zero-point

energy (1
2 h̄ω), and higher levels contribute to the energy only if the temper-

ature is sufficiently high, as shown in figure 2.
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Figure 2: Average energy (y-axis, J) of a single harmonic oscillator as a function

of temperature (x-axis, K)
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