Solutions to home work week 2

1. Because S is a state function, we can choose always the reversible path for
computing the entropy difference. For a reversible heating from 300 K to

320 K at constant pressure we have that

dQ  mCydT
ds = = = —2— 1
T T (1)
with m the mass of water (1 kg in our example). Integrating both sides
2y Ty
AS =mC, " TdT = mCyIn T, 2)

The heat capacity is so large because of the hydrogen bonding in water.

2. Use that for an ideal gas at constant temperature dU = 0. Thus, upon re-
versible expansion

dQ = dU — dW = pdV 3)

For the entropy change we have

_ _ P, _pl
dS = dQ/T = 7V = RdV 4)

Integrating both sides gives the entropy difference in going from V; to Va:

AS =Rln—= (5)

e no, because entropy is state funtion

e For reversible expansion, the entropy of the environment changes by



the oposite amount

ASy = —-AS = —RlnE (6)
Wi

In this case the entropy change of the total system is zero:

AS®' = AS +ASy;=0 (7

e For irreversible work against the constant external pressure at constant

temperature we have dW = —podV, while dU = 0. Thus,
AQ = poAV (8)

so that for the entropy change of the environment

AV
ASy = —% =P

T ®

because S is a state function, AS is the same as for the reversible

process. Thus for the entropy change in the total system we haev that

Vo poAV
AS®' = Rln = —
S Rln 7 T

>0 (10)

The inequality follows from fact that the expansion work is maximal

when done reversibly.

3. During the adiabatic expansion (d) = 0), not only work is done, but also
the temperature changes. Thus, we go from (p1, V1, 11) to (p2, Va,T2) . We

choose again the reversible path. For a reversible process we have that

dU = TdS — pdV (11)



and for the ideal gas we have that.
dU = CydT (12)

Isolating dS in equation 11 and using the expression for dU from equation 12

we get:

S =

p
T+ = 1
dT' + TdV (13)

From the equation of state we have that £ = g. Inserting and integrating on
both sides
Va

Ty
AS = In — In — 14
S CVHT1+RHV1 (14)

Thus, to get the entropy change, we need to know both the volume and
the temperature at the end states. We only know the volumes: V; and V5.
However, in exercise 3 of the previous homework set we derived that for
reversible adiabatic expansion pV"7 is a constant. Because we choose the
reversible pathway also now to do the expansion, we may use irreversible

adiabatic expansion!):

pVy = paVy) (15)

which we can re-write to
pViVT Y = vyt (16)

Using the equation of state for the ideal gas (pV = RT, assuming one mole

throughout):
RT1 Vl(’Y* 1) — RTQ VZ(V* 1)
(17)

Ty — (%)(7,1)



For the ideal gas we also have that
—— —1=— (18)

Therefore,
R

AS = CRAn(%)WJrRln%
= —Rln{+ Rln{? (19)

=0
Thus, the reversible adiabatic expansion is isentropic, AS = 0. The reason

is that although we increase volume and do work, we also lower the temper-

ature. This is an example of turning all heat into work!

If not reversible, the final temperature will be higher, and hence entropy

increased.

. At equilibrium, we have that

<8SAB 0Sa 0SB dVp

). (5, 3
oVa >NA’NByEA,EB (aVA>NA7EA oVg Np.Ep dV4 o0

From the fact that the total volume is conserved V4 + Vg = V45, we have

that dV4 + dVp = 0 and therefore

dVp
=1 21
Vs 21)

Thus, at equilibrium, we have that

8SA> <8SB>
994 — (&8 22)
<6VA Na,E 5 8VB Ng,Ep



We know (intuitively) that the pressures are the same in equilibrium. Fur-
thermore, the units of these derivatives are are JK " *m—3, while pressure has
3

Jm™°, we apparently need to multiply by temperature:

Py, (254 23)
aVA NAyEA

. There are two energy levels per nucleus. If we set (arbitrary, but convenient)

the lower level to 0 (Ey = 0 J), the probability for a single nucleus to be in

the higher energy level (F1 = 3 1072° ) is given by the Boltzmann factor:
exp[—(E]

p1 =

14 exp[-BE] 24

where we used that exp[0] = 1. Thus, of the N nuclei, there will be p; N in

the higher energy state with energy Fi,

N exp[—[E1]
Ni=Np=—""——7— 25
LT T T exp[ BB @
and po N in the lower energy state with energy Egy = O:
N
No=Npy=——""7"—"— 26
O T T exp[-BEY] 20

With N = 1,000,000 and £ = 1.3806 1023 JK~!, we have at

e 0 K: Ny =1000000 and N1 =0

e 10 K: Ny = 1000000 and N1 =0

100 K: Ny = 1000000 and N1 =0

300 K: Ny = 999286 and N = 714.

1000 K: Ny = 897796 and N; = 102204

10,000 K: Ny = 554111 and N; = 445889



In Figure 1 the number of particles in energy level E; is plotted as a function

of temperature.
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Figure 1: number of particles with energy level E; as a function of temperature

(x-axis, K)

6. For the quantum harmonic oscillator, the partition function:

7 = 220:0676(11+%)hw
— e 3w S, o—Bhwn (27)

= e (e

Since exp[—fhw] < 1, wecanuse ) , 2" = T,

ef%ﬁhw

Z= 1 — e=Phw

(28)

To calculate the ratio between the occupancies (i. e., probabilities) of energy

levels O and 1, we use the Boltzmann factors:

n+%),8hw
A

6_(

Pn = (29)



with Z in equation 28. However, we only need the ratio here, i. e.,:

L efl%ﬁhw
po 46w
(30)
— efﬁhw

Thus the ratios are at

e 1K:0

e 10K:0

e 100K: 0

e 1,000 K: 0.38
e 10,000 K: 0.91

The average energy is obtained as the derivative of the logarithm of the par-

tition function (equation 28) with respect to 3;

_ 0

1
- 9 efjﬁhw
= —35 In [16_%4

€19

= —% (ln [e‘éﬁhw} —1In [1 — e‘Bh”])

_ 01 0 —Bh

_ 1 hwe—Bhw
= shw+ i

Thus, irrespective of temperature, the energy always contains the zero-point
energy (%hw), and higher levels contribute to the energy only if the temper-

ature is sufficiently high, as shown in figure 2.
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Figure 2: Average energy (y-axis, J) of a single harmonic oscillator as a function

of temperature (x-axis, K)



