
Lecture 8: Monte Carlo

All relevant macroscopic properties of a molecular systems can be derived from

the partition function:
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where we assumed that all particles have the same mass.

However, the partition function itself can only be obtained analytically for the

most simple systems, such as harmonic oscillators and ideal gases. If there are

interactions between the particles, i.e., U(q1, ..qN ) 6= 0, the configurational part

of the partition function
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cannot be evaluated analytically and we need numerical methods instead for calcu-

lating expectation values of observables.

One such numerical method is the Metropolis Monte Carlo algorithm. The

idea is to only evaluate the integral in equation 2 at points that have a significant

Boltzmann factor.

Assume that we have a realistic starting configuration (i.e., precise informa-

tion about the initial positions of all atoms) of the system we’re interested in. This

might for instance be an x-ray structure, or a configuration from a previous sim-

ulation. This we call the old configuration, o, with energy U(o). We assume fur-

thermore that we can evaluate that potential energy function for any configuration,

or at least approximate it (note that evaluating this energy at a given point in con-

figuration space might be difficult, but is far less complicated than evaluating the
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multi-dimensional integral over all of configuration space).

The way to proceed is to make some random displacement of (few) atom(s) in

the old configuration to generate a new configuration nwith potential energy U(n).

Imagine that we do a very large number of Monte Carlo simulations in parallel, say

M . Then, for the M simulated systems to remain in equilibrium, the number of

moves that go from o to n in the M simulations must be identical to the number

of moves from n to o, otherwise the condition for equilibrium would be violated.

This is called detailed balance and implies:

N(o)π(o→ n) = N(n)π(n→ o) (3)

where π(o → n) is the probability for making a move from o to n and N(o) and

N(n) are the number of the M simulations, which are in configuration o and n.

Because at equilibrium, N(o) = M exp[−βU(o)]/Z, and likewise for n, we have

that
M

Z
exp[−βU(o)]π(o→ n) =

M

Z
exp[−βU(n)]π(n→ o) (4)

A trial move is a two step procedure: First, we select a move (e.g., displacing a

randomly chosen atom, or group of atoms): α(o → n). Second, we accept or

reject that move: acc(o→ n). Thus, the total probability of the move is:

π(o→ n) = α(o→ n)× acc(o→ n) (5)

If we further enforce that α(o → n) is symmetric, i.e., α(o → n) = α(n → o),

which is the case if we randomly select atoms for displacement, the condition for

detailed balance is

exp[−βU(o)]× acc(o→ n) = exp[−βU(n)]× acc(n→ o) (6)
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For the acceptance probabilities we thus get

acc(o→ n)

acc(n→ o)
= exp[−β[(U(n)− U(o))] (7)

In the first computer simulation, Metropolis, Rosenbluth, Rosenbluth, Teller and

Teller used the following criteria for accepting or rejecting trial moves:

acc(o→ n) = exp[−β[(U(n)− U(o))] if U(n) > U(o)

= 1 if U(n) ≤ U(o)

(8)

If we use a random number generator to get a random number R on the interval

[0, 1], we accept a move to a configuration with a higher energy if

exp[−β(U(n)− U(o))] > R (9)

while a move to a configuration of lower enegy than o is always accepted.
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