
Free energy

Here we derive expressions for the Helmholtz and Gibbs free energies from the

Clausius inequality:

∆S ≥ 0 (1)

which we obtained for a non-reversible Carnot engine.

Clausius inequality

Alternatively, we could have also looked at any other process and compare the re-

versible and irreversible pathways connecting states A and B to get the Clausius

inequality. Because energy is a state function, the energy of the system does not de-

pend on the path (note that we don’t specify what happens with the environment!):

(∆UA→B)rev = (∆UA→B)irrev (2)

For both the reversible and irreversible process we have that the energy of the

system can only change if either heat Q is transferred into it (positive heat) or out

of it (negative heat), or if work is done by it (negative work) or on it (positive

work):

dU = dQ + dW (3)

For the reversible process, we have furthermore that

dU = TdS + dW rev (4)

with dS = dQ
T . Because U is a state function, the change in system’s energy is the

same for both paths

dQirrev + dW irrev = TdS + dW rev (5)
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This equality also implies that in order to compute the change in a state function,

we can always choose the path that is most convenient! We also know that the

irreversible work is always less than the reversible work (−dW irrev) < (−dW rev).

The sign is negative, because this is the work we can get out of the system. Re-

member we did a numerical example for reversible versus irreversible expansion

of one mole of ideal gas to show that reversible expansion work is indeed larger.

This thus implies that for an irreversible process we could have changed more heat

into work, but did not. We can thus consider the difference between the irreversible

and reversible works as the dissipation work done by the system (or ’lost’ work)

(−dW diss) = (−dW rev) − (−dW irrev) (6)

Because, the entropy is also a state function, the entropy change of the system

(dS) is the same for both reversible and irreversible processes. So we take it to the

left hand side of equation 5:

dS =
1

T
dQirrev +

1

T

[
(−dW rev) − (−dW irrev)

]
(7)

Because (−dW irrev) < (−dW rev), this means that the second term on the right

hand side of the equation is larger than zero, so that

dS >
dQirrev

T
(8)

In other words, there is less heat up taken from the environment in the irreversible

process. Therefore, the change in entropy of the environment (∆S0 = −Qirrev

T ) is

smaller than the change in entropy of the system (∆S). We subscript everything

associated with the environment with a 0 here. The total entropy of system plus
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environment increases

∆Stot = ∆S − Qirrev

T
= ∆S + ∆S0 > 0 (9)

This is the Clausius inequality.

From here on, the derivation follows chapter 4 in the book of Mandl, “Statis-

tical Physics”. In words, the Clausius inequality states that for a process to occur

spontaneously in an isolated system, the entropy of that system must increase. The

equality (∆Stot = 0) is obtained if the process occurs reversibly. Then, we get

maximum work, and thus convert the maximum amount of heat into work.

The goal is to obtain an expression for determining the direction of sponta-

neous change only in terms of the system that we are interested in (e.g. chemical

substance) and the constraints on that system imposed by the environment (e.g.,

temperature, pressure or volume). We consider that system plus its (very large)

environment isolated. The environment can even be the total universe minus the

system. The details don’t matter; it is only essential that there is no exchange of

heat or work between the system plus environment on the one hand and the rest of

the universe on the other hand, i. e., ∆U tot = 0 for all processes.

If the system’s energy is changed by heat (Q) flowing into the system from the

environment (or out from the system into the environment) and the environment is

so large that heat exchange with system does not affect its temperature (T0), the

change in entropy of the environment is

∆S0 = −Q

T0
(10)

where the minus sign indicates that we look at the heat from the perspective of the

system. The change in entropy of the system plus environment can now be written

solely in terms of the heat exchange of the system (Q) and the the entropy change
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of the system (∆S):

∆Stot = ∆S − Q

T0
≥ 0 (11)

Although the heat exchange (Q) can change the state of the system, and hence

also its entropy (S is a state function!), the change of the entropy in the system

∆S is in principle independent of Q
T0

here. For example, the heat flowing into the

system from the environment can be used to break gas molecules apart (every gas

approaches an ideal gas at sufficiently low pressure) without raising the tempera-

ture. In this case U remains the same, but the entropy of the system (S) doubles

(why that is will be explained in the next lectures).

Maximum useful work

The effect of the pressure (P0) of the environment on the system is that for any

change of the system that involves changes in the system’s volume (∆V ), expan-

sion (or compression) work is done:

W = −P0∆V (12)

This is also ’lost’ work in that it cannot be used for anything other than for the

expansion or compression of the system against the pressure (P0) of the environ-

ment. Yet, we often want to use work for something else, like generating electric

current, or mechanical motion. That we call useful work: (−Wu). It has a negative

sign here, because we want to take that work out of the system. If, in addition to

the unavoidable expansion/compression work (−P0∆V ) such useful work (which

depends on the path along which we change in the system) is done as well, the total

work done by the system is

W tot = −P0∆V − (−Wu) (13)
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(note −×− = +) The total work W tot changes the energy of the system by

∆U = Q− P0∆V − (−Wu) (14)

If we isolate Q, which is the heat exchange between the system and environment

during the change

Q = ∆U + P0∆V + (−Wu) (15)

and insert this expression for Q into equation 11 we get for the entropy change of

the system plus environment

∆Stot = ∆S − 1

T0
[∆U + P0∆V + (−Wu)] ≥ 0 (16)

multiplying on both sides by T0, the temperature of the environment:

T0∆Stot = T0∆S − ∆U − P0∆V − (−Wu) ≥ 0 (17)

After some reshuffling this rearranges into

− [∆U + P0∆V − T0∆S] ≥ (−Wu) (18)

Thus, the total useful work the system can perform is

(−Wu) ≤ − [∆U + P0∆V − T0∆S] (19)

Remember a negative work on the system, means a positive work for us, which is

what we want obviously! Again, the maximum work is obtained, if the process of

extracting the work is done reversibly, in which case ∆Stot = 0 and

(−Wu) = − [∆U + P0∆V − T0∆S] (20)
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We normally consider systems at a constant temperature that are also kept at

constant volume (achieved by fixing the boundaries of the system) or at constant

pressure. If the process occurs in a system at constant temperature (T0) and con-

stant volume (∆V = 0), the maximum useful work that can be obtained from

a process occurring in the system is determined by the change in Helmholtz free

energy (∆A):

(−Wu) ≤ − [∆U − T0∆S] = −∆A (21)

Because U and S are state functions, also the Helmholtz free energy (A = U −

T0S) is a state function that depends only on the constraints (temperature, volume)

imposed on the system. Note that in case the process is a chemical reaction, also

the extent of the reaction, or the concentrations of the substances, is a constraint

that determines the state of the sytem, and hence the Helmholtz free energy. Unlike

pressure and temperature, however, we we cannot always easily control the extent

of a reaction. We will talk about this in the following lectures.

From equation 17, we also see that −∆A − (−Wu) is equal to T0∆Stot, the

change in entropy of the system plus environment! In other words, at constant

volume and temperature, the heat exchange between the system and environment

can not only be used to change the energy of the system (∆U ) but also to let the

system perform useful work (−Wu):

Q = ∆U + (−Wu) (22)

The entropy of the environment thus changes by

∆S0 = −Q

T0
=

1

T0
[−∆U − (−Wu)] (23)

If no useful work is done, less heat is extracted and only used to change the energy
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of the system and Q = ∆U .

Any process that decreases A while doing irreversibly useful work (or no use-

ful work at all, which is extremely irreversible) increases Stot and can thus occur

spontaneously (Clausius inequality). If the useful work is extracted reversibly, all

of the ∆A can be transformed into that work. In this case ∆Stot = 0, which is how

we defined reversibility.

If the pressure is kept constant, while the volume is allowed to vary, a part of

the total work is needed to do the unavoidable expansion or compression and is

therefore no longer available to do useful work. The maximum useful work that

the system can do at constant pressure and temperature is determined by the change

in Gibbs free energy

(−Wu) ≤ − [∆U + P0∆V − T0∆S] = −∆G (24)

As before, a process is spontaneous if ∆G ≤ 0 and the equilibrium, at which there

is no net change anymore, is reached when ∆G = 0.

7


