Born-Oppenheimer Approximation central to chemistry separation slow (nuclear) and fast (electronic) motion light electrons: QM (HF, DFT, ...), classical (MM) heavy nuclei: QM (wavepacket/grid), classical (MD)

Born-Oppenheimer Approximation central to chemistry separation slow (nuclear) and fast (electronic) motion light electrons: QM (HF, DFT, ...), classical (MM) heavy nuclei: QM (wavepacket/grid), classical (MD) crux: nuclei move on single electronic PES large energy gap between electronic states

Born-Oppenheimer Approximation central to chemistry separation slow (nuclear) and fast (electronic) motion light electrons: QM (HF, DFT, ...), classical (MM) heavy nuclei: QM (wavepacket/grid), classical (MD) crux: nuclei move on single electronic PES large energy gap between electronic states derivation of Born-Oppenheimer terms couple nuclear motion on different electronic PES

Born-Oppenheimer Approximation central to chemistry separation slow (nuclear) and fast (electronic) motion light electrons: QM (HF, DFT, ...), classical (MM) heavy nuclei: QM (wavepacket/grid), classical (MD) crux: nuclei move on single electronic PES large energy gap between electronic states derivation of Born-Oppenheimer terms couple nuclear motion on different electronic PES break down of Born-Oppenheimer approximation small energy gap between electronic states near surface crossings (degeneracies) radiationless transition

Born-Oppenheimer Approximation central to chemistry separation slow (nuclear) and fast (electronic) motion light electrons: QM (HF, DFT, ...), classical (MM) heavy nuclei: QM (wavepacket/grid), classical (MD) crux: nuclei move on single electronic PES large energy gap between electronic states derivation of Born-Oppenheimer terms couple nuclear motion on different electronic PES break down of Born-Oppenheimer approximation small energy gap between electronic states near surface crossings (degeneracies) radiationless transition adiabatic and diabatic electronic states

molecular Schrödinger equation (stationary)

 $H\Psi = E\Psi$

molecular Hamilton operator

 $H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$

with

$$\begin{split} T_N &= -\frac{1}{2} \sum_{i}^{N_N} \frac{\hbar^2}{M_i} \nabla_{\mathbf{R}}^2 \\ T_e &= -\frac{\hbar^2}{2m_e} \sum_{i}^{n_e} \nabla_{\mathbf{r}}^2 \\ U(\mathbf{r}, \mathbf{R}) &= \frac{e^2}{4\pi\epsilon_0} \left(\sum_{I}^{N_N} \sum_{J>I}^{N_N} \frac{Z_I Z_J}{|\mathbf{R}_A - \mathbf{R}_B|} - \sum_{I}^{N_N} \sum_{k}^{n_e} \frac{Z_I}{|\mathbf{r}_k - \mathbf{R}_B|} + \sum_{j}^{n_e} \sum_{k>j}^{n_e} \frac{1}{|\mathbf{r}_k - \mathbf{r}_j|} \right) \end{split}$$

molecular Hamilton operator

 $H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$

step I: clamped nuclei

separation of fast and slow degrees of freedom

 $T_N = 0$

molecular Hamilton operator

 $H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$

step I: clamped nuclei

separation of fast and slow degrees of freedom

 $T_N = 0$

always possible, not an approximation!

wrong choice: strong coupling between 'fast' and 'slow' motions

molecular Hamilton operator

 $H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$

step I: clamped nuclei

separation of fast and slow degrees of freedom

 $T_N = 0$

always possible, not an approximation!

wrong choice: strong coupling between 'fast' and 'slow' motions

consider only electronic degrees of freedom

 $H^e = T_e + U(\mathbf{r}, \mathbf{R})$

molecular Hamilton operator

 $H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$

step I: clamped nuclei

separation of fast and slow degrees of freedom

 $T_N = 0$

always possible, not an approximation!

wrong choice: strong coupling between 'fast' and 'slow' motions

consider only electronic degrees of freedom

 $H^e = T_e + U(\mathbf{r}, \mathbf{R})$

electronic Schrödinger equation in field of fixed nuclei $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

 $i \ge 1$: CI, SA-CASSCF, MRCI

electronic Schrödinger equation in field of fixed nuclei $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

electronic potential energy surface (PES)

electronic Schrödinger equation in field of fixed nuclei

diagonalize electronic Hamiltonian

 $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

solution form orthogonal basis

adiabatic electronic states

$$\langle \psi_i | \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(\mathbf{r}; \mathbf{R})^* \psi_j(\mathbf{r}; \mathbf{R}) d\mathbf{r} = \delta_{ij}$$

electronic Schrödinger equation in field of fixed nuclei

diagonalize electronic Hamiltonian

 $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

solution form orthogonal basis

adiabatic electronic states

$$\langle \psi_i | \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(\mathbf{r}; \mathbf{R})^* \psi_j(\mathbf{r}; \mathbf{R}) d\mathbf{r} = \delta_{ij}$$

Born representation: expansion in electronic basis

expansion coefficients are nuclear wave functions

$$\Psi(\mathbf{r},\mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R})\psi_{j}(\mathbf{r};\mathbf{R}),$$

no approximations so far!

molecular wave function in Born representation

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r}; \mathbf{R}),$$
$$H^{e} \psi_{i}(\mathbf{r}; \mathbf{R}) = V_{i}(\mathbf{R}) \psi_{i}(\mathbf{r}; \mathbf{R})$$

molecular hamiltonian

$$H = T_N + T_e + U(\mathbf{r}, \mathbf{R}) = T_N + H^e(\mathbf{R})$$

molecular wave function in Born representation

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r}; \mathbf{R}),$$
$$H^{e} \psi_{i}(\mathbf{r}; \mathbf{R}) = V_{i}(\mathbf{R}) \psi_{i}(\mathbf{r}; \mathbf{R})$$

molecular hamiltonian

$$H = T_N + T_e + U(\mathbf{r}, \mathbf{R}) = T_N + H^e(\mathbf{R})$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = E \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = E \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = E \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

using short-hand notation

$$H_{ij}(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | H | \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

 $= \langle \psi_i(\mathbf{r};\mathbf{R}) | T_N | \psi_j(\mathbf{r};\mathbf{R}) \rangle + V_i(\mathbf{R}) \delta_{ij}$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = E \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

using short-hand notation

$$H_{ij}(\mathbf{R}) = \langle \psi_i(\mathbf{r}; \mathbf{R}) | H | \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$

= $\langle \psi_i(\mathbf{r}; \mathbf{R}) | T_N | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + V_i(\mathbf{R}) \delta_{ij}$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = E \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

using short-hand notation

$$H_{ij}(\mathbf{R}) = \langle \psi_i(\mathbf{r}; \mathbf{R}) | H | \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$

= $\langle \psi_i(\mathbf{r}; \mathbf{R}) | T_N | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + V_i(\mathbf{R}) \delta_{ij}$

coupled differential equations

$$\sum_{j} H_{ij}(\mathbf{R})\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

matrix elements of nuclear kinetic energy operator

$$\langle \psi_i | T_N | \psi_j \rangle = \frac{-\hbar^2}{2M_k} \langle \psi_i | \nabla_{\mathbf{R}}^2 | \psi_j \rangle$$

$$= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \nabla_{\mathbf{R}} \cdot \nabla_{\mathbf{R}} | \psi_j \rangle \right)$$

 $= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \nabla_{\mathbf{R}} | [\nabla_{\mathbf{R}} \psi_j] \rangle + \langle \psi_i | \nabla_{\mathbf{R}} | \psi_j \rangle \nabla_{\mathbf{R}} \right)$

$$= \frac{-\hbar^2}{2M_k} \left(\left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}}^2 \psi_j \right] \right\rangle + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right] \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \right] \right\rangle = \frac{-\hbar^2}{2M_k} \left(\left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}}^2 \psi_j \right| \right\rangle + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \right] \right)$$

$$\langle \psi_i | [\nabla_{\mathbf{R}} \psi_j] \rangle \nabla_{\mathbf{R}} + \langle \psi_i | \psi_j \rangle \nabla_{\mathbf{R}}^2$$

$$= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \left[\nabla_{\mathbf{R}}^2 \psi_j \right] \rangle + 2 \langle \psi_i | \left[\nabla_{\mathbf{R}} \psi_j \right] \rangle \nabla_{\mathbf{R}} + \langle \psi_i | \psi_j \rangle \nabla_{\mathbf{R}}^2 \right)$$

$$= \frac{-\hbar^2}{2M_k} (G_{ij} + 2\mathbf{F}\nabla_{\mathbf{R}}) + T_N$$

$$= T_N \delta_{ij} - \Lambda_{ij}$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} H_{ij}(\mathbf{R})\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

collect all couplings in special operator $H_{ij}(\mathbf{R}) = [T_N + V_i(\mathbf{R})] \,\delta_{ij} - \Lambda_{ij}$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} H_{ij}(\mathbf{R})\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

collect all couplings in special operator $H_{ij}(\mathbf{R}) = [T_N + V_i(\mathbf{R})] \,\delta_{ij} - \Lambda_{ij}$

coupled equations

coupling between nuclear motion on different electronic PES coupling due to nuclear kinetic energy operator operating on electrons kind of resonance with energy exchange

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

coupled equations

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

non-adiabatic coupling operator matrix elements

$$\Lambda_{ij}(\mathbf{R}) = \sum_{k} \frac{\hbar^2}{2M_k} \left[2\mathbf{F}_{ij}^k(\mathbf{R}) \nabla_{\mathbf{R}_k} + G_{ij}^k(\mathbf{R}) \right]$$

with elements

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

$$G_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k}^2 \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

coupled equations

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t}\chi_i(\mathbf{R})$$

non-adiabatic coupling operator matrix elements

$$\Lambda_{ij}(\mathbf{R}) = \sum_{k} \frac{\hbar^2}{2M_k} \left[2\mathbf{F}_{ij}^k(\mathbf{R}) \nabla_{\mathbf{R}_k} + G_{ij}^k(\mathbf{R}) \right]$$

with elements

 $\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r}; \mathbf{R}) \rangle_{\text{non-adiabatic coupling vector}}$

$$G_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k}^2 \psi_j(\mathbf{r};\mathbf{R}) \rangle$$
 scalar coupling

coupled equations

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t}\chi_i(\mathbf{R})$$

non-adiabatic coupling operator matrix elements

$$\Lambda_{ij}(\mathbf{R}) = \sum_{k} \frac{\hbar^2}{2M_k} \left[2\mathbf{F}_{ij}^k(\mathbf{R}) \nabla_{\mathbf{R}_k} + G_{ij}^k(\mathbf{R}) \right]$$

with elements

 $\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$ non-adiabatic coupling vector

 $G_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}_k}^2 \psi_j(\mathbf{r}; \mathbf{R}) \rangle$ scalar coupling inversely proportional to nuclear mass! small terms due to mass difference, but...

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

electronic basis functions orthogonal:

$$\nabla_{\mathbf{R}} \langle \psi_i(\mathbf{r}; \mathbf{R}) | H^e | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = \nabla_{\mathbf{R}} V_j \delta_{ij} = 0$$

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

electronic basis functions orthogonal:

$$\nabla_{\mathbf{R}} \langle \psi_i(\mathbf{r}; \mathbf{R}) | H^e | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = \nabla_{\mathbf{R}} V_j \delta_{ij} = 0$$

silly:

$$0 = \langle \nabla_{\mathbf{R}} \psi_i(\mathbf{r}; \mathbf{R}) | H^e | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}} H^e | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + \langle \psi_i(\mathbf{r}; \mathbf{R}) | H^e | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

electronic basis functions orthogonal:

$$\nabla_{\mathbf{R}} \langle \psi_i(\mathbf{r}; \mathbf{R}) | H^e | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = \nabla_{\mathbf{R}} V_j \delta_{ij} = 0$$

silly:

$$0 = V_j \langle \nabla_{\mathbf{R}} \psi_i(\mathbf{r}; \mathbf{R}) | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}} H^e | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + V_i \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$

Born-Oppenheimer Approximation silly:

$$0 = V_j \langle \nabla_{\mathbf{R}} \psi_i(\mathbf{r}; \mathbf{R}) | \psi_j(\mathbf{r}; \mathbf{R}) \rangle +$$

 $\langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}} H^e | \psi_j(\mathbf{r};\mathbf{R}) \rangle +$

 $V_i \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}} \psi_j(\mathbf{r};\mathbf{R}) \rangle$

even more silly:

 $\nabla_{\mathbf{R}} \langle \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = 0$

 $\langle \nabla_{\mathbf{R}} \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + \langle \psi_i | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle = 0$

 $\langle \nabla_{\mathbf{R}} \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = - \langle \psi_i | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle$

Born-Oppenheimer Approximation silly:

$$0 = V_j \langle \nabla_{\mathbf{R}} \psi_i(\mathbf{r}; \mathbf{R}) | \psi_j(\mathbf{r}; \mathbf{R}) \rangle +$$

 $\langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}} H^e | \psi_j(\mathbf{r};\mathbf{R}) \rangle +$

 $V_i \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle$

even more silly:

 $\nabla_{\mathbf{R}} \langle \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = 0$

 $\langle \nabla_{\mathbf{R}} \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + \langle \psi_i | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle = 0$

$$\langle \nabla_{\mathbf{R}} \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = -\langle \psi_i | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$

Born-Oppenheimer Approximation silly:

$$0 = -V_j \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle +$$

 $\langle \psi_i(\mathbf{r};\mathbf{R})|\nabla_{\mathbf{R}}H^e|\psi_j(\mathbf{r};\mathbf{R})\rangle +$

 $V_i \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}} \psi_j(\mathbf{r};\mathbf{R}) \rangle$

even more silly:

 $\nabla_{\mathbf{R}} \langle \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = 0$

 $\langle \nabla_{\mathbf{R}} \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + \langle \psi_i | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle = 0$

$$\langle \nabla_{\mathbf{R}} \psi_i | \psi_j(\mathbf{r}; \mathbf{R}) \rangle = -\langle \psi_i | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

with:

$$0 = -V_j \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle + \\ \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}} H^e | \psi_j(\mathbf{r}; \mathbf{R}) \rangle +$$

 $V_i \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}} \psi_j(\mathbf{r}; \mathbf{R}) \rangle$

re-arrange into

$$\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$$

... coupling inversely proportional to energy gap!

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$$

important:

$$\langle \psi_i(\mathbf{r};\mathbf{R}) | H^e | \psi_j(\mathbf{r};\mathbf{R}) \rangle = V_j \delta_{ij}$$

but

 $\langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}} H^e | \psi_j(\mathbf{r};\mathbf{R}) \rangle \neq 0$

non-adiabatic coupling matrix element

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

no diagonal elements

$$\mathbf{F}_{ii}^k(\mathbf{R}) = 0$$

because

$$\nabla_{\mathbf{R}} \langle \psi_i | \psi_i \rangle = 0$$

 $\langle \nabla_{\mathbf{R}} \psi_i | \psi \rangle + \langle \psi_i | \nabla_{\mathbf{R}} \psi_i \rangle = 0$

 $\langle \psi_i | \nabla_{\mathbf{R}} \psi \rangle + \text{c.c} = 0$

nuclear Schrödinger in Born representation

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

coupling between nuclear wavefunctions on different PES
nuclear Schrödinger in Born representation

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

coupling between nuclear wavepackets on different PES Born-Oppenheimer approximation: $\Lambda = \Lambda_{ii}$

$$[T_N + V_i(\mathbf{R}) + \Lambda_{ii}]\chi_i(\mathbf{R}) = E\chi_i(\mathbf{R})$$

nuclear wavepackets restricted to single electronic PES $\Psi_i^{\text{tot}}(\mathbf{R}, \mathbf{r}) = \chi_i(\mathbf{R})\psi_i(\mathbf{r}; \mathbf{R})$

nuclear Schrödinger in Born representation

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_i \Lambda_{ij}\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

coupling between nuclear wavepackets on different PES Born-Oppenheimer approximation: $\Lambda = \Lambda_{ii}$

$$[T_N + V_i(\mathbf{R}) + \Lambda_{ii}]\chi_i(\mathbf{R}) = E\chi_i(\mathbf{R})$$

nuclear wavepackets restricted to single electronic PES $\Psi_i^{\text{tot}}(\mathbf{R}, \mathbf{r}) = \chi_i(\mathbf{R})\psi_i(\mathbf{r}; \mathbf{R})$

adiabatic approximation: $\Lambda=0$

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) = E\chi_i(\mathbf{R})$$

mostly used in quantum chemistry

Born-Oppenheimer Approximation nuclear Schrödinger in Born representation

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

using atomic units and scaled coordinates

$$T_N = -\frac{1}{2M} \nabla_{\mathbf{R}}^2$$
$$\Lambda_{ij} = \frac{1}{2M} \left(2\mathbf{F}_{ij} \cdot \nabla_{\mathbf{R}} + G_{ij} \right) \right)$$

 $\mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \qquad G_{ij} = \langle \psi_i | \nabla_{\mathbf{R}}^2 \psi_j \rangle$

using atomic units and scaled coordinates

$$T_N = -\frac{1}{2M} \nabla_{\mathbf{R}}^2$$
$$\Lambda_{ij} = \frac{1}{2M} \left(2\mathbf{F}_{ij} \cdot \nabla_{\mathbf{R}} + G_{ij} \right)$$

$$\mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \qquad G_{ij} = \langle \psi_i | \nabla_{\mathbf{R}}^2 \psi_j \rangle$$

using the relation

$$\mathbf{G} = \nabla_{\mathbf{R}} \cdot \mathbf{F} + \mathbf{F} \cdot \mathbf{F}$$

one arrives at

$$\left[-\frac{1}{2M}(\nabla_{\mathbf{R}}+\mathbf{F})^{2}+\mathbf{V}\right]\boldsymbol{\chi}=E\boldsymbol{\chi}$$

nuclear Schrödinger in vector notation

$$\left[-\frac{1}{2M}(\nabla_{\mathbf{R}}+\mathbf{F})^{2}+\mathbf{V}\right]\boldsymbol{\chi}=E\boldsymbol{\chi}$$

dressed kinetic energy operator

$$\tilde{T}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

non local & non diagonal

couples nuclear dynamics on multiple electronic PES

induces radiationless transitions!

potential energy operator

local & diagonal

no coupling

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$$

inversely proportional with gap!

break down of adiabatic approximation!

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$$

inversely proportional with gap!

break down of adiabatic approximation!

non-adiabatic dynamics

multiple surfaces

branching

interference/coherence

photochemistry

intersection between adiabatic surfaces

adiabatic electronic basis

diagonal & local potential matrix

$$\langle \psi_i | H^e | \psi_j \rangle = \delta_{ij} V_j$$

non-diagonal & non-local nuclear kinetic energy matrix

$$\langle \psi_i | T_N | \psi_j \rangle = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \left\langle \psi_i | \nabla_{\mathbf{R}} | \psi_j \right\rangle \right)^2$$

coupling in **F**

adiabatic electronic basis

diagonal & local potential matrix

$$\langle \psi_i | H^e | \psi_j \rangle = \delta_{ij} V_j$$

non-diagonal & non-local nuclear kinetic energy matrix

$$\langle \psi_i | T_N | \psi_j \rangle = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \left\langle \psi_i | \nabla_{\mathbf{R}} | \psi_j \right\rangle \right)^2$$

coupling in ${\boldsymbol{F}}$

diabatic representation

non-diagonal & local potential matrix $\langle \varphi_i | H^e | \varphi_j \rangle = W_{ij}$ coupling in W

diagonal nuclear kinetic energy matrix

$$\langle \varphi_i | T_N | \varphi_j \rangle = -\frac{\delta_{ij}}{2M} \nabla_{\mathbf{R}}^2$$

diabatic electronic basis

electronic character preserved

interatomic distance

diabatic electronic basis

electronic character preserved

adiabatic electronic basis

electronic character mixed

diabatic representation

non-diagonal & local potential matrix

$$\langle \varphi_i | H^e | \varphi_j \rangle = W_{ij}$$

diagonal nuclear kinetic energy matrix

$$\langle \varphi_i | T_N | \varphi_j \rangle = -\frac{\delta_{ij}}{2M} \nabla_{\mathbf{R}}^2$$

molecular Hamiltonian

$$H_{ij} = T_N \delta i j + W_{ij}$$

molecular Schrödinger equation

$$\sum_{j} H_{ij}\chi_j = T_N\chi_i + \sum_{j} W_{ij}\chi_j = E\chi_i$$

 $\mathbf{H}\boldsymbol{\chi} = \left[\mathbf{T}_{\mathbf{N}}\mathbf{I} + \mathbf{W}(\mathbf{R})\right]\boldsymbol{\chi} = \mathbf{E}\boldsymbol{\chi}$

construction of diabatic basis

unitary transformation for each nuclear configuration

$$\varphi_i(\mathbf{r};\mathbf{R}) = \sum_j \psi_j(\mathbf{r};\mathbf{R}) U_{ji}(\mathbf{R})$$

construction of diabatic basis

unitary transformation for each nuclear configuration

$$\varphi_i(\mathbf{r};\mathbf{R}) = \sum_j \psi_j(\mathbf{r};\mathbf{R}) U_{ji}(\mathbf{R})$$

construction of diabatic Hamiltonian

potential matrix $W = U^T V U$ kinetic energy (diagonal) $T_N I = U^T \tilde{T}_N U$

construction of diabatic basis

unitary transformation for each nuclear configuration

$$\varphi_i(\mathbf{r};\mathbf{R}) = \sum_j \psi_j(\mathbf{r};\mathbf{R}) U_{ji}(\mathbf{R})$$

construction of diabatic Hamiltonian

kinetic energy (diagonal) $T_N^d \mathbf{1} = \mathbf{U}^{\dagger} \tilde{\mathbf{T}}_N \mathbf{U}$

dressed kinetic energy operator

$$\tilde{\mathbf{T}}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

transformation should nullify non-adiabatic coupling

construction of diabatic Hamiltonian

dressed kinetic energy operator

$$\tilde{\mathbf{T}}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

transformation should nullify non-adiabatic coupling

construction of diabatic Hamiltonian

dressed kinetic energy operator

$$\tilde{\mathbf{T}}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

transformation should nullify non-adiabatic coupling

 $\langle \varphi_i | \nabla_{\mathbf{R}} \varphi_j \rangle = \sum_k \sum_l U_{ik}(\mathbf{R}) \langle \psi_k | \nabla_{\mathbf{R}} U_{lj}(\mathbf{R}) \psi_l \rangle$

 $= \sum_{k} \sum_{l} \left[U_{ik} (\mathbf{R} \langle \psi_{k} | \psi_{l} \rangle \nabla_{\mathbf{R}} U_{lj}(\mathbf{R}) + U_{ik}(\mathbf{R}) \langle \psi_{k} | \nabla_{\mathbf{R}} | \psi_{l} \rangle U_{lj}(\mathbf{R}) \right]$

 $= \sum_{k} U_{ik} \nabla_{\mathbf{R}} U_{kj} + \sum_{k} \sum_{l} U_{ik}(\mathbf{R}) \langle \psi_{k} | \nabla_{\mathbf{R}} | \psi_{l} \rangle U_{lj}(\mathbf{R})$

construction of diabatic Hamiltonian

dressed kinetic energy operator

$$\tilde{\mathbf{T}}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

transformation should nullify non-adiabatic coupling

$$\langle \varphi_i | \nabla_{\mathbf{R}} \varphi_j \rangle = \sum_k \sum_l U_{ik}(\mathbf{R}) \langle \psi_k | \nabla_{\mathbf{R}} U_{lj}(\mathbf{R}) \psi_l \rangle$$

 $= \sum_{k} \sum_{l} \left[U_{ik} (\mathbf{R} \langle \psi_{k} | \psi_{l} \rangle \nabla_{\mathbf{R}} U_{lj}(\mathbf{R}) + U_{ik}(\mathbf{R}) \langle \psi_{k} | \nabla_{\mathbf{R}} | \psi_{l} \rangle U_{lj}(\mathbf{R}) \right]$

$$= \sum_{k} U_{ik} \nabla_{\mathbf{R}} U_{kj} + \sum_{k} \sum_{l} U_{ik}(\mathbf{R}) \langle \psi_{k} | \nabla_{\mathbf{R}} | \psi_{l} \rangle U_{lj}(\mathbf{R})$$

find U such that

$$\mathbf{U}^{\mathbf{T}}\mathbf{F}\mathbf{U} + \mathbf{U}^{\mathbf{T}}\nabla_{\mathbf{R}}\mathbf{U} = \mathbf{0}$$

derivation

not an approximation! separation between fast and slow degrees of freedom

nuclei move on single adiabatic PES

ignore non-adiabatic coupling

breakdown

small energy gap between electronic PES at intersections infinite non-adiabatic coupling nuclear displacement couple different adiabatic states highly complicated nuclear wavefunction switch to diabatic basis only electronic coupling unitary transformation

Conical Intersection surface crossings funnels for photochemical reactions conditions for crossing adiabatic representation two coordinates needed to locate intersection two coordinates needed to lift degeneracy topology of intersection double cone 2N-8 dimensional hyperline properties of intersection Berry phase singularity due to separation between electronic and nuclear motion compensated by nuclear wavefunction (complicated!)

photoisomerization in bacteriorhodopsin excited state decay via S₁/S₀ conical intersection

CASSCF/OPLS & diabatic hopping

molecular motors

molecular motors

adiabatic surfaces $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$ can cross (are degenerate) $V_i(\mathbf{R}) = V_j(\mathbf{R})$

adiabatic surfaces

 $H^e \psi_i(\mathbf{r};\mathbf{R}) = V_i(\mathbf{R})\psi_i(\mathbf{r};\mathbf{R})$

can cross (are degenerate)

 $V_i(\mathbf{R}) = V_j(\mathbf{R})$

break-down of Born-Oppenheimer

non-adiabatic coupling becomes infinite! $\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$

adiabatic surfaces

 $H^e \psi_i(\mathbf{r};\mathbf{R}) = V_i(\mathbf{R})\psi_i(\mathbf{r};\mathbf{R})$

can cross (are degenerate)

 $V_i(\mathbf{R}) = V_j(\mathbf{R})$

break-down of Born-Oppenheimer

non-adiabatic coupling becomes infinite! $\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$

switch to diabatic basis

no non-adiabatic coupling

back to adiabatic basis by diagonalizing ${\bf W}$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

construct mixed diabatic/adiabatic basis at ${f R}_0$

via unitary transformation

$$\{\varphi_2,\varphi_1,\psi_3,...,\psi_n\}$$

orthonormal

$$\langle \psi_i | \psi_j \rangle = \delta_{ij} \quad \langle \varphi_I | \varphi_J \rangle = \delta_{IJ} \quad \langle \varphi_I | \psi_j \rangle = 0$$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

construct mixed diabatic/adiabatic basis at ${f R}_0$

via unitary transformation

$$\{\varphi_2,\varphi_1,\psi_3,...,\psi_n\}$$

orthonormal

$$\langle \psi_i | \psi_j \rangle = \delta_{ij} \quad \langle \varphi_I | \varphi_J \rangle = \delta_{IJ} \quad \langle \varphi_I | \psi_j \rangle = 0$$

diabatic and adiabatic energies for two lowest states

$$E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

construct mixed diabatic/adiabatic basis at ${f R}_0$

via unitary transformation

$$\{\varphi_2,\varphi_1,\psi_3,...,\psi_n\}$$

orthonormal

$$\langle \psi_i | \psi_j \rangle = \delta_{ij} \quad \langle \varphi_I | \varphi_J \rangle = \delta_{IJ} \quad \langle \varphi_I | \psi_j \rangle = 0$$

diabatic and adiabatic energies for two lowest states

$$E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$$

adiabatic wavefunctions

$$\psi_1 = c_{11}\varphi_1 + c_{12}\varphi_2 \qquad \psi_2 = c_{21}\varphi_1 + c_{22}\varphi_2$$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

transformation to mixed diabatic/adiabatic basis at $\ensuremath{\mathbf{R}}_0$

diabatic electronic energies

$$E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$$
$$\mathbf{W}(\mathbf{R}_0) = \mathbf{V}(\mathbf{R}_0)$$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

transformation to mixed diabatic/adiabatic basis at $\ensuremath{\mathbf{R}}_0$

diabatic electronic energies

$$E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$$
$$\mathbf{W}(\mathbf{R}_0) = \mathbf{V}(\mathbf{R}_0)$$
$$W_{ij} = H_{ij} = \langle \varphi_i | H^e | \varphi_j \rangle$$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

transformation to mixed diabatic/adiabatic basis at ${f R}_0$

diabatic electronic energies $E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$ $\mathbf{W}(\mathbf{R}_0) = \mathbf{V}(\mathbf{R}_0)$ $W_{ij} = H_{ij} = \langle \varphi_i | H^e | \varphi_j \rangle$ $\mathbf{W}(\mathbf{R}_0) = \begin{pmatrix} H_{11}(\mathbf{R}_0) & H_{12}(\mathbf{R}_0) \\ H_{12}(\mathbf{R}_0) & H_{22}(\mathbf{R}_0) \end{pmatrix}$

degeneracy between two electronic states at \mathbf{R}_0

diabatic electronic energies

$$\mathbf{W}(\mathbf{R_0}) = \begin{pmatrix} H_{11}(\mathbf{R_0}) & H_{12}(\mathbf{R_0}) \\ H_{12}(\mathbf{R_0}) & H_{22}(\mathbf{R_0}) \end{pmatrix}$$

degeneracy between two electronic states at \mathbf{R}_0

diabatic electronic energies

$$\mathbf{W}(\mathbf{R_0}) = \begin{pmatrix} H_{11}(\mathbf{R_0}) & H_{12}(\mathbf{R_0}) \\ H_{12}(\mathbf{R_0}) & H_{22}(\mathbf{R_0}) \end{pmatrix}$$

adiabatic electronic energies

diagonalize W

$$V_1(\mathbf{R_0}) = \left(\frac{H_{11} + H_{22}}{2}\right) - \sqrt{\left(\frac{H_{11} - H_{22}}{2}\right)^2 + H_{12}^2}$$
$$V_2(\mathbf{R_0}) = \left(\frac{H_{11} + H_{22}}{2}\right) + \sqrt{\left(\frac{H_{11} - H_{22}}{2}\right)^2 + H_{12}^2}$$

degeneracy between two electronic states at \mathbf{R}_0

diabatic electronic energies

$$\mathbf{W}(\mathbf{R_0}) = \begin{pmatrix} H_{11}(\mathbf{R_0}) & H_{12}(\mathbf{R_0}) \\ H_{12}(\mathbf{R_0}) & H_{22}(\mathbf{R_0}) \end{pmatrix}$$

adiabatic electronic energies

diagonalize W

$$V_1(\mathbf{R_0}) = \left(\frac{H_{11} + H_{22}}{2}\right) - \sqrt{\left(\frac{H_{11} - H_{22}}{2}\right)^2 + H_{12}^2}$$
$$V_2(\mathbf{R_0}) = \left(\frac{H_{11} + H_{22}}{2}\right) + \sqrt{\left(\frac{H_{11} - H_{22}}{2}\right)^2 + H_{12}^2}$$

degeneracy (crossing) if

$$H_{11} = H_{22} \wedge H_{12} = 0$$

independent: TWO coordinates required to locate degeneracy degeneracy preserved in N-8 remaining internal coordinates
topology of intersection expand W around R₀

 $W(R - R_0) = W^{(0)} + W^{(1)} + W^{(2)} + \dots$

topology of intersection expand W around \mathbf{R}_0 $\mathbf{W}(\mathbf{R} - \mathbf{R}_0) = \mathbf{W}^{(0)} + \mathbf{W}^{(1)} + \mathbf{W}^{(2)} + ...$

zeroth order term

$$\mathbf{W}^{(0)} = \frac{E_A + E_B}{2} \mathbf{1} + \begin{pmatrix} -\frac{E_B - E_A}{2} & 0 \\ 0 & \frac{E_B - E_A}{2} \end{pmatrix}$$

topology of intersection expand W around \mathbf{R}_0 $\mathbf{W}(\mathbf{R} - \mathbf{R}_0) = \mathbf{W}^{(0)} + \mathbf{W}^{(1)} + \mathbf{W}^{(2)} + ...$

zeroth order term

$$\mathbf{W}^{(0)} = \frac{E_A + E_B}{2} \mathbf{1} + \begin{pmatrix} -\frac{E_B - E_A}{2} & 0 \\ 0 & \frac{E_B - E_A}{2} \end{pmatrix}$$

offset, set to zero for convenience

 $\mathbf{W}^{(0)} = \mathbf{0}$

topology of intersection expand W around \mathbf{R}_0 $\mathbf{W}(\mathbf{R} - \mathbf{R}_0) = \mathbf{W}^{(0)} + \mathbf{W}^{(1)} + \mathbf{W}^{(2)} + ...$

zeroth order term

$$\mathbf{W}^{(0)} = \frac{E_A + E_B}{2} \mathbf{1} + \begin{pmatrix} -\frac{E_B - E_A}{2} & 0 \\ 0 & \frac{E_B - E_A}{2} \end{pmatrix}$$

offset, set to zero for convenience $\mathbf{W}^{(0)} = \mathbf{0}$

first order term

$$\mathbf{W}^{(1)} = \begin{pmatrix} \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} + \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} \\ \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} - \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} \end{pmatrix}$$

 $\Delta \mathbf{R} = \mathbf{R}_0 - \mathbf{R}$

topology of intersection

first order term

$$\mathbf{W}^{(1)} = \begin{pmatrix} \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} + \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} - \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \mathbf{N} \end{pmatrix} \\ \mathbf{W}^{(1)} = \begin{pmatrix} \mathbf{s} \cdot \Delta \mathbf{R} + \mathbf{g} \cdot \Delta \mathbf{R} & \mathbf{h} \cdot \Delta \mathbf{R} \\ \mathbf{h} \cdot \Delta \mathbf{R} & \mathbf{s} \cdot \Delta \mathbf{R} - \mathbf{g} \cdot \Delta \mathbf{R} \end{pmatrix}$$

topology of intersection

first order term

$$\mathbf{W}^{(1)} = \begin{pmatrix} \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} + \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} - \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \mathbf{M} \end{pmatrix} \\ \mathbf{W}^{(1)} = \begin{pmatrix} \mathbf{s} \cdot \Delta \mathbf{R} + \mathbf{g} \cdot \Delta \mathbf{R} & \mathbf{h} \cdot \Delta \mathbf{R} \\ \mathbf{h} \cdot \Delta \mathbf{R} & \mathbf{s} \cdot \Delta \mathbf{R} - \mathbf{g} \cdot \Delta \mathbf{R} \end{pmatrix}$$

average gradient vector

$$\mathbf{s} = \nabla_{\mathbf{R}} \frac{H_{11} + H_{22}}{2} |\mathbf{R}_0|$$

gradient difference vector

$$\mathbf{g} = \nabla_{\mathbf{R}} \frac{H_{11} - H_{22}}{2} |\mathbf{R}_0|$$

derivative coupling vector

 $\mathbf{h} = \nabla_{\mathbf{R}} H_{12} | \mathbf{R}_0$

topology of intersection

keeping only terms to first order

 $\mathbf{W}(\Delta \mathbf{R}) \approx \mathbf{W}^{(0)} + \mathbf{W}^{(1)}$

topology of intersection

keeping only terms to first order

 $\mathbf{W}(\Delta \mathbf{R}) \approx \mathbf{W}^{(0)} + \mathbf{W}^{(1)}$

set zeroth order term to zero (just an offset)

$$\mathbf{W}(\Delta \mathbf{R}) pprox \left(egin{array}{ccc} \mathbf{s} \cdot \Delta \mathbf{R} + \mathbf{g} \cdot \Delta \mathbf{R} & \mathbf{h} \cdot \Delta \mathbf{R} \\ \mathbf{h} \cdot \Delta \mathbf{R} & \mathbf{s} \cdot \mathbf{\Delta R} - \mathbf{g} \cdot \mathbf{\Delta R} \end{array}
ight)$$

topology of intersection

keeping only terms to first order

 $\mathbf{W}(\Delta \mathbf{R}) \approx \mathbf{W}^{(0)} + \mathbf{W}^{(1)}$

set zeroth order term to zero (just an offset)

$$\mathbf{W}(\Delta \mathbf{R}) pprox \left(egin{array}{ccc} \mathbf{s} \cdot \Delta \mathbf{R} + \mathbf{g} \cdot \Delta \mathbf{R} & \mathbf{h} \cdot \Delta \mathbf{R} \\ \mathbf{h} \cdot \Delta \mathbf{R} & \mathbf{s} \cdot \mathbf{\Delta R} - \mathbf{g} \cdot \mathbf{\Delta R} \end{array}
ight)$$

diagonalize to get adiabatic PES

$$V_1(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} - \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$$
$$V_2(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} + \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$$

topology of intersection eigenvalues of W $V_1(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} - \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \overline{\Delta \mathbf{R}})^2}$ $V_2(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} + \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$ double cone in branching space (g-h space) adiabatic surfaces touch at tip average gradient projected on g-h gives tilt of cone g

Solution Solution

h

back to adiabatic basis

degeneracy requires (to first order) that

 $\mathbf{g} \cdot \Delta \mathbf{R} = \mathbf{0} \wedge \mathbf{h} \cdot \Delta \mathbf{R}$

independent: accidental same-symmetry intersection

two coordinate need to change to locate intersection

single degree of freedom: non-crossing rule in diatomics

degeneracy lifted in branching space (two-dimensional)

degeneracy maintained in 3N-8 remaining degree of freedom

back to adiabatic basis

degeneracy lifted in branching space

 $\mathbf{x}_1 = \|\mathbf{g}\| \quad \mathbf{x}_2 = \|\mathbf{h}\|$

back to adiabatic basis

degeneracy lifted in branching space

 $\mathbf{x}_1 = \|\mathbf{g}\| \quad \mathbf{x}_2 = \|\mathbf{h}\|$

degeneracy maintained in 3N-8 remaining degree of freedom

tri-atomics: hypothetical example

average gradient (s)determines tilt of double cone peaked

photoreactivity $\mathbf{s} \cdot \mathbf{g} \approx \mathbf{0} \quad \mathbf{s} \cdot \mathbf{h} \approx \mathbf{0}$ sloped photostability $\mathbf{s} \cdot \mathbf{g} > \mathbf{0}$ all are 3N-8 dimensional hyperlines impossible to hit compare point in plane possible to get near coupling strong enough for transition