Electron correlation

definition

 $E^{\text{corr.}} = E^{\text{exact}} - E^{\text{HF}}$

Configuration Interaction

- sum over all possible Slater determinants/spin adapted-configuration state functions general expression for correlation energy (not so useful...) truncated Cl MCSCF/CASSCF
- size consistency
- Perturbation theory

slater determinants, single, double, triple, ... excitations

Combinations of CI and PT

MCSCF with xth order perturbation (x=2)

Concludes the ab initio, next is density functional theory

restricted Hartree Fock in nutshell one particle, mean field theory

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

$$\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \overline{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \overline{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \overline{\phi}_{n/2}(\mathbf{r}_n) \right]$$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \overline{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \overline{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \overline{\phi}_{n/2}(\mathbf{r}_n) \right]$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Fock operator

$$f_{ij} = \langle \phi_i(\mathbf{r}_1) | h(\mathbf{r}_1) | \phi_j(\mathbf{r}_1) \rangle + \sum_k \left\langle \phi_i(\mathbf{r}_1) \phi_k(\mathbf{r}_2) \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_1 - \mathbf{r}_2|} \right| \phi_k(\mathbf{r}_1) \phi_j(\mathbf{r}_2) \right\rangle$$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

$$\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \overline{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \overline{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \overline{\phi}_{n/2}(\mathbf{r}_n) \right]$$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Fock operator

$$f_{ij} = \left\langle \phi_i(\mathbf{r}_1) | h(\mathbf{r}_1) | \phi_j(\mathbf{r}_1) \right\rangle + \sum_k \left\langle \phi_i(\mathbf{r}_1) \phi_k(\mathbf{r}_2) \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_1 - \mathbf{r}_2|} \right| \phi_k(\mathbf{r}_1) \phi_j(\mathbf{r}_2) \right\rangle$$

basisset

$$\phi_{i}(\mathbf{r}_{1}) = \sum_{\alpha} c_{i\alpha} \chi_{\alpha}(\mathbf{r}_{1}) \qquad \text{density matrix}$$

$$\hat{f} = h + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma} \left\langle \chi_{\sigma} \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \right| \chi_{\lambda} \right\rangle \qquad P_{\mu\nu} = 2 \sum_{a}^{\frac{1}{2}n_{e}} c_{\mu a} c_{\nu a}^{*}$$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

$$\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \overline{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \overline{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \overline{\phi}_{n/2}(\mathbf{r}_n) \right]$$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Fock operator

$$f_{ij} = \left\langle \phi_i(\mathbf{r}_1) | h(\mathbf{r}_1) | \phi_j(\mathbf{r}_1) \right\rangle + \sum_k \left\langle \phi_i(\mathbf{r}_1) \phi_k(\mathbf{r}_2) \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_1 - \mathbf{r}_2|} \right| \phi_k(\mathbf{r}_1) \phi_j(\mathbf{r}_2) \right\rangle$$

basisset

$$\begin{split} \phi_{i}(\mathbf{r}_{1}) &= \sum_{\alpha} c_{i\alpha} \chi_{\alpha}(\mathbf{r}_{1}) & \text{density matrix} \\ \hat{f} &= h + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma} \left\langle \chi_{\sigma} \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \right| \chi_{\lambda} \right\rangle & P_{\mu\nu} = 2 \sum_{a}^{\frac{1}{2}n_{e}} c_{\mu a} c_{\nu a}^{*} \end{split}$$

iterative self-consistent solution procedure

restricted Hartree Fock in nutshell

one particle, mean field theory, no e-e correlation

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

electron-electron correlation

static correlation

large separation of electrons in pair (i.e. H₂ dissociation) near degeneracies: different spatial wavefunctions multi-configuration SCF

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

electron-electron correlation

static correlation

large separation of electrons in pair

near degeneracies: different spatial wavefunctions

multi-configuration SCF

dynamic correlation

- short distance: cusp
- not so dependent on orbitals/density
- perturbation theory

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

electron-electron correlation

static correlation

large separation of electrons in pair

near degeneracies: different spatial wavefunctions

multi-configuration SCF

dynamic correlation

- short distance: cusp
- not so dependent on orbitals/density
- perturbation theory
- simple distinction not always possible

Beyond Hartree-Fock: Configuration Interaction

one-electron basisset

$$\Phi(\mathbf{x}_1) = \sum_i a_i \phi_i(\mathbf{x}_1)$$

two-electron basisset

$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \sum_i a_i(\mathbf{x}_2)\phi_i(\mathbf{x}_1)$$
$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \sum_i \sum_j b_{ij}\phi_i(\mathbf{x}_1)\phi_j(\mathbf{x}_2)$$

correlation energy configuration interaction functions of one electron expansion in one-electron functions $\phi(x_1) = \sum_i a_i \chi_i(x_1)$

functions of two electrons

configuration interaction

functions of one electron

expansion in one-electron functions

$$\phi(x_1) = \sum_i a_i \chi_i(x_1)$$

functions of two electrons

expansion in one-electron functions, keeping second electron fixed

$$\phi(x_1, x_2) = \sum_i a_i(x_2)\chi_i(x_1)$$

configuration interaction

functions of one electron

expansion in one-electron functions

$$\phi(x_1) = \sum_i a_i \chi_i(x_1)$$

functions of two electrons

expansion in one-electron functions, keeping second electron fixed

$$\phi(x_1, x_2) = \sum_i a_i(x_2)\chi_i(x_1)$$

expansion of coefficients in one-electron functions

$$a(x_2) = \sum_j b_{ij} \chi_j(x_2)$$

configuration interaction

functions of one electron

expansion in one-electron functions

$$\phi(x_1) = \sum_i a_i \chi_i(x_1)$$

functions of two electrons

expansion in one-electron functions, keeping second electron fixed

$$\phi(x_1, x_2) = \sum_i a_i(x_2)\chi_i(x_1)$$

expansion of coefficients in one-electron functions

$$a(x_2) = \sum_j b_{ij}\chi_j(x_2)$$

so that

$$\phi(x_1, x_2) = \sum_{i} \sum_{j} b_{ij} \chi_i(x_1) \chi_j(x_2)$$

configuration interaction

functions of two electrons

Pauli principle

 $\phi(x_1, x_2) = -\phi(x_2, x_1)$

configuration interaction

functions of two electrons

Pauli principle

 $\phi(x_1, x_2) = -\phi(x_2, x_1)$

antisymmetric superposition

$$\phi(x_1, x_2) = \sum_{i} \sum_{j>i} b_{ij} \left[\chi_i(x_1) \chi_j(x_2) - \chi_j(x_1) \chi_i(x_2) \right]$$

configuration interaction

functions of two electrons

Pauli principle

 $\phi(x_1, x_2) = -\phi(x_2, x_1)$

antisymmetric superposition

$$\phi(x_1, x_2) = \sum_{i} \sum_{j>i} b_{ij} \left[\chi_i(x_1) \chi_j(x_2) - \chi_j(x_1) \chi_i(x_2) \right]$$

in determinants

$$\phi(x_1, x_2) = \sum_{i} \sum_{j} \frac{1}{\sqrt{2}} b_{ij} \det \left[\chi_i(x_1) \chi_j(x_2) \right]$$

configuration interaction

functions of two electrons

Pauli principle

 $\phi(x_1, x_2) = -\phi(x_2, x_1)$

antisymmetric superposition

$$\phi(x_1, x_2) = \sum_{i} \sum_{j>i} b_{ij} \left[\chi_i(x_1) \chi_j(x_2) - \chi_j(x_1) \chi_i(x_2) \right]$$

in determinants

$$\phi(x_1, x_2) = \sum_{i} \sum_{j} \frac{1}{\sqrt{2}} b_{ij} \det \left[\chi_i(x_1) \chi_j(x_2) \right]$$

in general

n-electron wavefunction

$$\Psi_{i} = \sum_{j} C_{ij} \psi_{j} = C_{i0} \psi_{0} + \sum_{ra} C_{ia}^{r} \psi_{a}^{r} + \sum_{\substack{a < b \\ r < s}} C_{iab}^{rs} \psi_{ab}^{rs} + \dots$$

full configuration interaction

exact solution (within finite basisset)

$$\Psi_{i} = \sum_{j} C_{ij} \psi_{j} = C_{i0} \psi_{0} + \sum_{ra} C_{ia}^{r} \psi_{a}^{r} + \sum_{\substack{a < b \\ r < s}} C_{iab}^{rs} \psi_{ab}^{rs} + \dots$$

full configuration interaction

exact solution (within finite basisset)

$$\Psi_{i} = \sum_{j} C_{ij} \psi_{j} = C_{i0} \psi_{0} + \sum_{ra} C_{ia}^{r} \psi_{a}^{r} + \sum_{\substack{a < b \\ r < s}} C_{iab}^{rs} \psi_{ab}^{rs} + \dots$$

truncated configuration interaction

CISingles

excited states (higher roots)

no correlation in ground state

ClSinglesDoubles

stronger correlation in ground state

CISinglesDoublesTriples

stronger correlation in excited states than in ground state

•••

too expensive: number of configurations blows up

truncated configuration interaction

ClSingles, Double, Triples ...

systematic

number of configurations blows up

truncated configuration interaction

ClSingles, Double, Triples ...

systematic

number of configurations blows up

multi-configuration SCF

multiple configurations

free to choose, not black box!

optimize both CI and MO coefficients

correlation energy truncated configuration interaction ClSingles, Double, Triples ... systematic number of configurations blows up multi-configuration SCF multiple configurations free to choose, not black box!

optimize both CI and MO coefficients

basis for higher level methods

$$\Psi_i = \sum_{j}^{M} C_{ij} \psi_j.$$
 Slater

$$\Phi = \sum_{I} (K_{I} \Psi_{I} + \sum_{i,a} K_{Iia} \Psi_{Iia} + \sum_{i,a,j,b} K_{Iiajb} \Psi_{Iiajb} + ...)$$

a root in MCSCF

of Slaters in each configuration in root

truncated configuration interaction

ClSingles, Double, Triples ...

systematic

number of configurations blows up

multi-configuration SCF

multiple configurations

free to choose, not black box!

optimize both CI and MO coefficients

basis for higher level methods

MultiReferenceCl

$$\Psi_i = \sum_j^M C_{ij} \psi_j.$$

$$\Phi = \sum_{I} (K_I \Psi_I + \sum_{i,a} K_{Iia} \Psi_{Iia} + \sum_{i,a,j,b} K_{Iiajb} \Psi_{Iiajb} + \dots)$$

perturbation theory: CASP12

full CI

CASSCF

m=2n

multi-configuration SCF

Complete Active Space SCF

select electrons and orbitals for full CI (HF, NBO)

knowledge/intuition/luck

multi-configuration SCF

Complete Active Space SCF

select electrons and orbitals for full CI (HF, NBO)

knowledge/intuition/luck/

CASSCF

recovers static correlation

near degeneracy

CASSCF

recovers static correlation

near degeneracy

excited states

optimize second root in Cl

CASSCF

recovers static correlation

near degeneracy

excited states

optimize second root in CI

problem: need expectation values involving both states $\langle \psi_{S_0} | \nabla_{\bf R} H | \psi_{S_1} \rangle$

CASSCF

recovers static correlation

near degeneracy

excited states

optimize second root in CI

problem: need expectation values involving both states $\langle \psi_{S_0} | \nabla_{\mathbf{R}} H | \psi_{S_1} \rangle$

problem: root flipping

CASSCF

recovers static correlation

near degeneracy

excited states

optimize second root in CI

problem: need expectation values involving both states

 $\langle \psi_{S_0} | \nabla_{\mathbf{R}} H | \psi_{S_1} \rangle$

problem: root flipping

state average CASSCF

same molecular orbitals for all states

optimize the weighted average energy

$$E^{\rm SA} = \sum_{i} \omega_i E_i$$

average density matrix

SA-CASSCF

same molecular orbitals for all states

sometimes orbitals change drastically upon excitation wavefunction is not variational minimum

 $\nabla_{\mathbf{R}} E = \nabla_{\mathbf{R}} \langle \psi | H | \psi \rangle$

 $= \langle \nabla_{\mathbf{R}} \psi | H | \psi \rangle + \langle \psi | \nabla_{\mathbf{R}} H | \psi \rangle + \langle \psi | H | \nabla_{\mathbf{R}} \psi \rangle$

SA-CASSCF

same molecular orbitals for all states

sometimes orbitals change drastically upon excitation wavefunction is not variational minimum

$$\nabla_{\mathbf{R}} E = \nabla_{\mathbf{R}} \langle \psi | H | \psi \rangle$$

$$= \langle \nabla_{\mathbf{R}} \psi | H | \psi \rangle + \langle \psi | \nabla_{\mathbf{R}} H | \psi \rangle + \langle \psi | H | \nabla_{\mathbf{R}} \psi \rangle$$

$$\begin{split} \langle \nabla_{\mathbf{R}} \psi | H | \psi \rangle &= \langle \nabla_{\mathbf{c}_{MO}} \psi | H | \psi \rangle \nabla_{\mathbf{R}} \mathbf{c}_{MO} + \\ & \langle \nabla_{\mathbf{c}_{CI}} \psi | H | \psi \rangle \nabla_{\mathbf{R}} \mathbf{c}_{CI} + \end{split}$$

beyond Hartree Fock

Configuration Interaction

linear combination of Slater determinants

$$\Psi = |\psi_0\rangle + \sum_a^r c_a^r |\psi_a^r\rangle + \sum_a^r \sum_{b>a}^{s>r} c_{ab}^{rs} |\psi_{ab}^{rs}\rangle$$
$$+ \sum_a^r \sum_{b>a}^{s>r} \sum_{c>b}^{t>s} c_{abc}^{rst} |\psi_{abc}^{rst}\rangle$$
$$+ \sum_a^r \sum_{b>a}^{s>r} \sum_{c>b}^{t>s} \sum_{d>c}^{u>t} c_{abcd}^{rstu} |\psi_{abcd}^{rstu}\rangle + \dots$$

intermediate normalization

$$\langle \Psi | \psi_0 \rangle = 1$$

size consistent, only if *all* determinants are included impossible in practice!

variational in c

Beyond Hartree-Fock: Configuration Interaction

one-electron basisset

$$\Phi(\mathbf{x}_1) = \sum_i a_i \phi_i(\mathbf{x}_1)$$

two-electron basisset

$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \sum_i a_i(\mathbf{x}_2)\phi_i(\mathbf{x}_1)$$
$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \sum_i \sum_j b_{ij}\phi_i(\mathbf{x}_1)\phi_j(\mathbf{x}_2)$$

n-electron basisset

slater determinants, single, double, triple, ... excitations

$$\Phi = |\Psi_0\rangle + \sum_{a}^{n_{\text{occ}}} \sum_{r}^{n_{\text{virt}}} c_a^r |\Psi_a^r\rangle + \sum_{a}^{n_{\text{occ}}} \sum_{b}^{n_{\text{occ}}} \sum_{r}^{n_{\text{virt}}} \sum_{s}^{n_{\text{virt}}} c_{ab}^{rs} |\Psi_{ab}^{rs}\rangle + \dots$$

Brillouin's theorem

$$\langle \Psi_0 | \hat{H} | \Psi_a^r \rangle = 0$$

truncate: CIS, CISD, CISDT, CISDTQ, ... (size inconsistent!!)

beyond Hartree Fock

Configuration Interaction

linear combination of Slater determinants

$$\Psi = |\psi_0\rangle + \sum_a^r c_a^r \hat{X}_a^r |\psi_0\rangle + \sum_a^r \sum_{b>a}^{s>r} c_{ab}^{rs} \hat{X}_{ab}^{rs} |\psi_0\rangle$$

$$+\sum_{a}^{r}\sum_{b>a}^{s>r}\sum_{c>b}^{t>s}c_{abc}^{rst}\hat{X}_{abc}^{rst}|\psi_{0}\rangle$$

$$+\sum_{a}^{r}\sum_{b>a}^{s>r}\sum_{c>b}^{t>s}\sum_{d>c}^{u>t}c_{abcd}^{rstu}\hat{X}_{abcd}^{rstu}|\psi_{0}\rangle+\dots$$

truncation of full CI to limit computational effort

CISD, CISDT, CISDTQ, ...

not size consistent because not all determinants are included

beyond Hartree Fock

Full Configuration Interaction expansion

all determinants included

example H_2 and $2 H_2$

$$= |1_1\bar{1}_1\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1}|2_1\bar{2}_1\rangle$$

$$2 H_2: \quad \Psi^{12} = |1_1\bar{1}_11_2\bar{1}_2\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1}|2_1\bar{2}_11_2\bar{1}_2\rangle + c_{1_2\bar{1}_2}^{2_2\bar{2}_2}|1_1\bar{1}_12_2\bar{2}_2\rangle$$

1

$$+c_{1_1\bar{1}_1\bar{1}_1\bar{1}_2\bar{1}_2}^{2_1\bar{2}_1\bar{2}_2\bar{2}_2}|2_1\bar{2}_12_2\bar{2}_2\rangle$$

Truncated Configuration Interaction expansion

only include HF, single and doubly excited determinants 2 H₂: $\Psi^{12} = |1_1 \overline{1}_1 1_2 \overline{1}_2 \rangle + c_{1_1 \overline{1}_1}^{2_1 \overline{2}_1} |2_1 \overline{2}_1 1_2 \overline{1}_2 \rangle + c_{1_2 \overline{1}_2}^{2_2 \overline{2}_2} |1_1 \overline{1}_1 2_2 \overline{2}_2 \rangle$

beyond Hartree Fock Full CI

all determinants included

$$\begin{split} \Psi^{12} &= |1_1 \bar{1}_1 1_2 \bar{1}_2 \rangle + c_{1_1 \bar{1}_1}^{2_1 \bar{2}_1} |2_1 \bar{2}_1 1_2 \bar{1}_2 \rangle + c_{1_2 \bar{1}_2}^{2_2 \bar{2}_2} |1_1 \bar{1}_1 2_2 \bar{2}_2 \\ &+ c_{1_1 \bar{1}_1 1_2 \bar{1}_2}^{2_1 \bar{2}_2 \bar{2}_2 \bar{2}_2} |2_1 \bar{2}_1 2_2 \bar{2}_2 \rangle \\ \text{at large separation: independent molecules!} \\ \Psi^{12} &= \Psi^1 \Psi^2 \end{split}$$

$$= \left(|1_1\bar{1}_1\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1} |2_1\bar{2}_1\rangle \right) \left(|1_2\bar{1}_2\rangle + c_{1_2\bar{1}_2}^{2_2\bar{2}_2} |2_2\bar{2}_2\rangle \right)$$

$$= |1_1\bar{1}_1\rangle|1_2\bar{1}_2\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1}|2_1\bar{2}_1\rangle|1_2\bar{1}_2\rangle + c_{1_2\bar{1}_2}^{2_2\bar{2}_2}|1_1\bar{1}_1\rangle|2_2\bar{2}_2\rangle$$

2

1

 $+c_{1_1\bar{1}_1}^{2_1\bar{2}_1}c_{1_2\bar{1}_2}^{2_2\bar{2}_2}|2_1\bar{2}_1\rangle|2_2\bar{2}_2\rangle$

idea

approximate the quadruples coefficients by doubles...

$$c_{abcd}^{rstu} \approx c_{ab}^{rs} * c_{cd}^{tu}$$

due to anti-symmetry there are 18 such terms:

$$c^{rstu}_{abcd} \approx c^{rs}_{ab} c^{tu}_{cd} - c^{rs}_{ac} c^{tu}_{bd} + c^{rs}_{ad} c^{tu}_{bc} + \dots$$

coupled-clusters doubles wavefunction

$$\Psi^{CCD} = \Pi_{ab,rs} \left(1 + c_{ab}^{rs} X_{ab}^{rs} \right) |\psi_0\rangle$$

non-linear expansion in coefficients

all (2n)-tuply excited determinants included: size consistent! only uses doubles coefficients

non-variational

idea

approximate the n-tuply coefficients by singles, doubles, ..

$$\begin{aligned} c^{rstu}_{abcd} &\approx c^{rs}_{ab} * c^{tu}_{cd} \\ c^{rstuv}_{abcde} &\approx c^{rs}_{ab} * c^{tu}_{cd} * c^{v}_{e} \\ c^{rstuvw}_{abcdef} &\approx c^{rs}_{ab} * c^{tu}_{cd} * c^{vw}_{ef} \end{aligned}$$

general case

non-linear expansion in coefficients and excitations

$$\Psi^{CC} = \left[\Pi_{a,r}(1 + c_a^r X_a^r)\right] \left[\Pi_{ab,rs}(1 + c_{ab}^{rs} X_{ab}^{rs})\right] \dots |\psi_0\rangle$$

identical to full CI if all possible excitation levels are considered

general case

non-linear expansion in coefficients and excitations

$$\Psi^{CC} = \left[\Pi_{a,r}(1 + c_a^r X_a^r)\right] \left[\Pi_{ab,rs}(1 + c_{ab}^{rs} X_{ab}^{rs})\right] \dots |\psi_0\rangle$$

identical to full CI if all possible excitation levels are considered

close to full CI otherwise, because all excitations are approximately included

restrict excitation level to doubles: CCSD

$$\Psi^{CCSD} = \left[\Pi_{a,r}(1 + c_a^r X_a^r)\right] \left[\Pi_{ab,rs}(1 + c_{ab}^{rs} X_{ab}^{rs})\right] |\psi_0\rangle$$

all n-tuply excited determinants included: size consistent!

only singles and doubles coefficients needed

optimization of coefficients

general case

non-linear expansion in coefficients and excitations

$$\Psi^{CC} = \left[\Pi_{a,r}(1 + c_a^r X_a^r)\right] \left[\Pi_{ab,rs}(1 + c_{ab}^{rs} X_{ab}^{rs})\right] \dots |\psi_0\rangle$$

exponential ansatz

since

$$\hat{X}_{ab}^{rs}\hat{X}_{ab}^{rs} = 0 \qquad \exp(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots$$

we can invert the Taylor series

$$1 + c_{ab}^{rs} \hat{X}_{ab}^{rs} = 1 + c_{ab}^{rs} \hat{X}_{ab}^{rs} + \frac{1}{2} (c_{ab}^{rs})^2 \hat{X}_{ab}^{rs} \hat{X}_{ab}^{rs} + \dots = \exp(c_{ab}^{rs} \hat{X}_{ab}^{rs})$$

to recast the coupled clusters expansion

$$\Psi^{CC} = \Pi_{a,r} \exp(c_a^r \hat{X}_a^r) \Pi_{ab,rs} \exp(c_{ab}^{rs} \hat{X}_{ab}^{rs}) \dots |\psi_0\rangle$$
$$\Psi^{CC} = \exp\left(\sum_{a,r} c_a^r \hat{X}_a^r + \sum_{ab,rs} c_{ab}^{rs} \hat{X}_{ab}^{rs} + \dots\right) |\psi_0\rangle$$

exponential ansatz of CC

$$\Psi^{CC} = \exp\left(\sum_{a,r} c_a^r \hat{x}_a^r + \sum_{ab,rs} c_{ab}^{rs} \hat{X}_{ab}^{rs} + \dots\right) |\psi_0\rangle$$

restrict excitation level up to doubles: CCSD

$$\Psi^{CCSD} = \exp\left(\sum_{a,r} c_a^r \hat{x}_a^r + \sum_{ab,rs} c_{ab}^{rs} \hat{X}_{ab}^{rs}\right) |\psi_0\rangle$$

includes all excited determinants: size consistent!

only uses singles and doubles coefficients

single reference methods

works only if HF is reasonable approximation

fails if ground state has multi-configurational character: dissociation!

UHF reference