minimal basis (I function per shell)

H-He: Is (I)

- Li-Ne: Is, 2s, 2p_x, 2p_y, 2p_z (5)
- Na-Ar: Is, 2s, 2p_x, 2p_y, 2p_z, 3s, 3p_x, 3p_y, 3p_z (9)

Slater-type orbitals

computationally demanding

$$f_{1s}(\zeta, \mathbf{r}) = \exp[-\zeta r]$$

Gaussian-type orbitals

computationally convenient

$$g_{1s}(\alpha, \mathbf{r}) = (8\alpha^3 / \pi^3)^{1/4} \exp[-\alpha r^2]$$

$$g_{2p_x}(\alpha, \mathbf{r}) = (128\alpha^5/\pi^3)^{1/4}x \exp[-\alpha r^2]$$

$$g_{3d_{xy}}(\alpha, \mathbf{r}) = (2048\alpha^7/\pi^3)^{1/4} xy \exp[-\alpha r^2]$$

Gaussian-type orbitals

computationally convenient, but not as accurate as Slater-type orbitals linear combination (contraction) of several gaussians (primitives)

STO-3G

$$\phi_{1s}^{\text{CGF}} = \sum_{i=1}^{3} d_{i,1s} g_{1s}(\alpha_{i,1s})$$

 $\min \left[\int \left(\phi_{2s}^{\text{SF}}(\mathbf{r}) - \phi_{2s}^{\text{CGF}}(\mathbf{r}) \right) d\mathbf{r} - \int \left(\phi_{2p}^{\text{SF}}(\mathbf{r}) - \phi_{2p}^{\text{CGF}}(\mathbf{r}) \right) d\mathbf{r} \right]^{2}$ notation (for 1st row elements) (6s3p/3s)[2s1p/1s]

Double-Zeta basis (split valence)

two basisfunctions (contractions) per valence orbital

3-21G
H-He:

$$\phi'_{1s} = \sum_{i}^{2} d_{i,1s} g_{1s}(\alpha'_{i,1s}) \quad \text{compact}$$

$$\phi''_{1s} = g_{1s}(\alpha''_{i,1s}) \quad \text{diffuse}$$
Li-Ne:

$$\phi_{1s} = \sum_{i}^{3} d_{i,1s} g_{1s}(\alpha_{i,1s})$$

$$\phi'_{2s} = \sum_{i=1}^{2} d'_{i,2s} g_{1s}(\alpha'_{i,2sp})$$
 compact

$$\phi_{2s}^{\prime\prime} = g_{1s}(\alpha_{i,2sp}^{\prime\prime})$$
 diffuse

$$\phi'_{2p} = \sum_{i=1}^{2} d'_{i,2p} g_{2p}(\alpha'_{i,2sp})$$
 compact

 $\phi_{2p}^{\prime\prime} = g_{2p}(\alpha_{i,2sp}^{\prime\prime})$ diffuse

Double-Zeta basis (split valence)

two basisfunctions (contractions) per valence orbital

4-31G
H-He:
$$\phi'_{1s} = \sum_{i}^{3} d_{i,1s} g_{1s}(\alpha'_{i,1s})$$

 $\phi''_{1s} = g_{1s}(\alpha''_{i,1s})$

Li-Ne:

$$\phi_{1s} = \sum_{i}^{4} d_{i,1s} g_{1s}(\alpha_{i,1s})$$

$$\phi_{2s}' = \sum_{i}^{3} d'_{i,2s} g_{1s}(\alpha'_{i,2sp})$$

$$\phi_{2s}'' = g_{1s}(\alpha''_{i,2sp})$$

$$\phi_{2p}' = \sum_{i}^{3} d'_{i,2p} g_{2p}(\alpha'_{i,2sp})$$

$$\phi_{2p}'' = g_{2p}(\alpha''_{i,2sp})$$

Double-Zeta basis

two basisfunctions (contractions) per valence orbital

6-3IG H-He: $\phi'_{1s} = \sum_{i}^{3} d_{i,1s} g_{1s}(\alpha'_{i,1s})$ $\phi''_{1s} = g_{1s}(\alpha''_{i,1s})$

Li-Ne:

$$\phi_{1s} = \sum_{i}^{6} d_{i,1s} g_{1s}(\alpha_{i,1s})$$

$$\phi_{2s}' = \sum_{i}^{3} d'_{i,2s} g_{1s}(\alpha'_{i,2sp})$$

$$\phi_{2s}'' = g_{1s}(\alpha''_{i,2sp})$$

$$\phi_{2p}' = \sum_{i}^{3} d'_{i,2p} g_{2p}(\alpha'_{i,2sp})$$

$$\phi_{2p}'' = g_{2p}(\alpha''_{i,2sp})$$

Double-Zeta basis with polarization functions

two basisfunctions (contractions) per valence orbital

- Li-Ne: 3d functions (*)
- H-He: 2p functions (**)
- 3-2|G*, 4-3|G*, 6-3|G*, 6-3|G**

note 6 d-functions (i.e. 5 3d functions + 3s)

$$3d_{xx}, 3d_{yy}, 3d_{zz}, 3d_{xy}, 3d_{yz}, 3d_{zx}$$

linear combinbations of 5 pure 3d functions 1 3s:

$$3d_{xy}, 3d_{x^2-y^2}, 3d_{yz}, 3d_{zx}, 3d_{z^2}, 3s_{x^2+y^2+z^2}$$

contractions

6-31G*:
$$(11s4p1d/4s)[4s2p1d/2s]$$

6-31G**: $(11s4p1d/4s1p)[4s2p1d/2s1p]$

Molecular Quantum Mechanics

molecular orbitals

linear combination of atomic orbitals (hydrogen)

$$\phi_i(r) = \sum_j c_{ji} \chi_j(r)$$

example: hydrogen molecule, minimal basis

$$\phi_1(r) = \chi_1(r) + \chi_2(r)$$

 $\phi_2(r) = \chi_1(r) - \chi_2(r)$

Molecular Quantum Mechanics

molecular orbitals

linear combination of atomic orbitals (hydrogen)

$$\phi_i(r) = \sum_j c_{ji} \chi_j(r)$$

example: hydrogen molecule, minimal basis

Molecular Quantum Mechanics

- limitations of Hartree-Fock theory
 - mean-field: no electron correlation

beyond Hartree-Fock

- configuration interaction (ci)
 - $\Psi = |\psi_0\rangle + \sum_a^r c_a^r |\psi_a^r\rangle + \sum_a^r \sum_{b>a}^{s>r} c_{ab}^{rs} |\psi_{ab}^{rs}\rangle$

 $+\sum_{a}^{r}\sum_{b>a}^{s>r}\sum_{c>b}^{t>s}c_{abc}^{rst}|\psi_{abc}^{rst}\rangle$

 $+\sum_{a}^{r}\sum_{b>a}^{s>r}\sum_{c>b}^{t>s}\sum_{d>c}^{u>t}c_{abcd}^{rstu}|\psi_{abcd}^{rstu}\rangle+\dots$

multiconfiguration self-consistent field (mcscf)

Electron correlation

definition

 $E^{\text{corr.}} = E^{\text{exact}} - E^{\text{HF}}$

Configuration Interaction

- sum over all possible Slater determinants/spin adapted-configuration state functions general expression for correlation energy (not so useful...) truncated Cl MCSCF/CASSCF
- size consistency
- Perturbation theory

slater determinants, single, double, triple, ... excitations

Combinations of CI and PT

MCSCF with xth order perturbation (x=2)

Concludes the ab initio, next is density functional theory

restricted Hartree Fock in nutshell

one particle, mean field theory

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

$$\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \overline{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \overline{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \overline{\phi}_{n/2}(\mathbf{r}_n) \right]$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Fock operator

$$f_{ij} = \langle \phi_i(\mathbf{r}_1) | h(\mathbf{r}_1) | \phi_j(\mathbf{r}_1) \rangle + \sum_k \left\langle \phi_i(\mathbf{r}_1) \phi_k(\mathbf{r}_2) \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_1 - \mathbf{r}_2|} \right| \phi_k(\mathbf{r}_1) \phi_j(\mathbf{r}_2) \right\rangle$$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

$$\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \overline{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \overline{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \overline{\phi}_{n/2}(\mathbf{r}_n) \right]$$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Fock operator

$$f_{ij} = \left\langle \phi_i(\mathbf{r}_1) | h(\mathbf{r}_1) | \phi_j(\mathbf{r}_1) \right\rangle + \sum_k \left\langle \phi_i(\mathbf{r}_1) \phi_k(\mathbf{r}_2) \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_1 - \mathbf{r}_2|} \right| \phi_k(\mathbf{r}_1) \phi_j(\mathbf{r}_2) \right\rangle$$

basisset

$$\phi_{i}(\mathbf{r}_{1}) = \sum_{\alpha} c_{i\alpha} \chi_{\alpha}(\mathbf{r}_{1}) \qquad \text{density matrix}$$

$$\hat{f} = h + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma} \left\langle \chi_{\sigma} \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \right| \chi_{\lambda} \right\rangle \qquad P_{\mu\nu} = 2 \sum_{a}^{\frac{1}{2}n_{e}} c_{\mu a} c_{\nu a}^{*}$$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

$$\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \overline{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \overline{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \overline{\phi}_{n/2}(\mathbf{r}_n) \right]$$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Fock operator

$$f_{ij} = \left\langle \phi_i(\mathbf{r}_1) | h(\mathbf{r}_1) | \phi_j(\mathbf{r}_1) \right\rangle + \sum_k \left\langle \phi_i(\mathbf{r}_1) \phi_k(\mathbf{r}_2) \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_1 - \mathbf{r}_2|} \right| \phi_k(\mathbf{r}_1) \phi_j(\mathbf{r}_2) \right\rangle$$

basisset

$$\begin{split} \phi_{i}(\mathbf{r}_{1}) &= \sum_{\alpha} c_{i\alpha} \chi_{\alpha}(\mathbf{r}_{1}) & \text{density matrix} \\ \hat{f} &= h + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma} \left\langle \chi_{\sigma} \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \right| \chi_{\lambda} \right\rangle & P_{\mu\nu} = 2 \sum_{a}^{\frac{1}{2}n_{e}} c_{\mu a} c_{\nu a}^{*} \end{split}$$

iterative self-consistent solution procedure

restricted Hartree Fock in nutshell

one particle, mean field theory, no e-e correlation

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

electron-electron correlation

static correlation

large separation of electrons in pair (i.e. H₂ dissociation) near degeneracies: different spatial wavefunctions multi-configuration SCF

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

electron-electron correlation

static correlation

large separation of electrons in pair

near degeneracies: different spatial wavefunctions

multi-configuration SCF

dynamic correlation

- short distance: cusp
- not so dependent on orbitals/density
- perturbation theory

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

electron-electron correlation

static correlation

large separation of electrons in pair

near degeneracies: different spatial wavefunctions

multi-configuration SCF

dynamic correlation

- short distance: cusp
- not so dependent on orbitals/density
- perturbation theory
- simple distinction not always possible

Beyond Hartree-Fock: Configuration Interaction

one-electron basisset

$$\Phi(\mathbf{x}_1) = \sum_i a_i \phi_i(\mathbf{x}_1)$$

two-electron basisset

$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \sum_i a_i(\mathbf{x}_2)\phi_i(\mathbf{x}_1)$$
$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \sum_i \sum_j b_{ij}\phi_i(\mathbf{x}_1)\phi_j(\mathbf{x}_2)$$

correlation energy configuration interaction functions of one electron expansion in one-electron functions $\phi(x_1) = \sum_i a_i \chi_i(x_1)$

functions of two electrons

configuration interaction

functions of one electron

expansion in one-electron functions

$$\phi(x_1) = \sum_i a_i \chi_i(x_1)$$

functions of two electrons

expansion in one-electron functions, keeping second electron fixed

$$\phi(x_1, x_2) = \sum_i a_i(x_2)\chi_i(x_1)$$

configuration interaction

functions of one electron

expansion in one-electron functions

$$\phi(x_1) = \sum_i a_i \chi_i(x_1)$$

functions of two electrons

expansion in one-electron functions, keeping second electron fixed

$$\phi(x_1, x_2) = \sum_i a_i(x_2)\chi_i(x_1)$$

expansion of coefficients in one-electron functions

$$a(x_2) = \sum_j b_{ij} \chi_j(x_2)$$

configuration interaction

functions of one electron

expansion in one-electron functions

$$\phi(x_1) = \sum_i a_i \chi_i(x_1)$$

functions of two electrons

expansion in one-electron functions, keeping second electron fixed

$$\phi(x_1, x_2) = \sum_i a_i(x_2)\chi_i(x_1)$$

expansion of coefficients in one-electron functions

$$a(x_2) = \sum_j b_{ij}\chi_j(x_2)$$

so that

$$\phi(x_1, x_2) = \sum_{i} \sum_{j} b_{ij} \chi_i(x_1) \chi_j(x_2)$$

configuration interaction

functions of two electrons

Pauli principle

 $\phi(x_1, x_2) = -\phi(x_2, x_1)$

configuration interaction

functions of two electrons

Pauli principle

 $\phi(x_1, x_2) = -\phi(x_2, x_1)$

antisymmetric superposition

$$\phi(x_1, x_2) = \sum_{i} \sum_{j>i} b_{ij} \left[\chi_i(x_1) \chi_j(x_2) - \chi_j(x_1) \chi_i(x_2) \right]$$

configuration interaction

functions of two electrons

Pauli principle

 $\phi(x_1, x_2) = -\phi(x_2, x_1)$

antisymmetric superposition

$$\phi(x_1, x_2) = \sum_{i} \sum_{j>i} b_{ij} \left[\chi_i(x_1) \chi_j(x_2) - \chi_j(x_1) \chi_i(x_2) \right]$$

in determinants

$$\phi(x_1, x_2) = \sum_{i} \sum_{j} \frac{1}{\sqrt{2}} b_{ij} \det \left[\chi_i(x_1) \chi_j(x_2) \right]$$

configuration interaction

functions of two electrons

Pauli principle

 $\phi(x_1, x_2) = -\phi(x_2, x_1)$

antisymmetric superposition

$$\phi(x_1, x_2) = \sum_{i} \sum_{j>i} b_{ij} \left[\chi_i(x_1) \chi_j(x_2) - \chi_j(x_1) \chi_i(x_2) \right]$$

in determinants

$$\phi(x_1, x_2) = \sum_{i} \sum_{j} \frac{1}{\sqrt{2}} b_{ij} \det \left[\chi_i(x_1) \chi_j(x_2) \right]$$

in general

n-electron wavefunction

$$\Psi_{i} = \sum_{j} C_{ij} \psi_{j} = C_{i0} \psi_{0} + \sum_{ra} C_{ia}^{r} \psi_{a}^{r} + \sum_{\substack{a < b \\ r < s}} C_{iab}^{rs} \psi_{ab}^{rs} + \dots$$

full configuration interaction

exact solution (within finite basisset)

$$\Psi_{i} = \sum_{j} C_{ij} \psi_{j} = C_{i0} \psi_{0} + \sum_{ra} C_{ia}^{r} \psi_{a}^{r} + \sum_{\substack{a < b \\ r < s}} C_{iab}^{rs} \psi_{ab}^{rs} + \dots$$

full configuration interaction

exact solution (within finite basisset)

$$\Psi_{i} = \sum_{j} C_{ij} \psi_{j} = C_{i0} \psi_{0} + \sum_{ra} C_{ia}^{r} \psi_{a}^{r} + \sum_{\substack{a < b \\ r < s}} C_{iab}^{rs} \psi_{ab}^{rs} + \dots$$

truncated configuration interaction

ClSingles

excited states (higher roots)

no correlation in ground state

ClSinglesDoubles

stronger correlation in ground state

CISinglesDoublesTriples

stronger correlation in excited states than in ground state

•••

too expensive: number of configurations blows up

truncated configuration interaction

ClSingles, Double, Triples ...

systematic

number of configurations blows up

correlation energy truncated configuration interaction

ClSingles, Double, Triples ...

systematic

number of configurations blows up

multi-configuration SCF

multiple configurations

free to choose, not black box!

optimize both CI and MO coefficients

correlation energy truncated configuration interaction ClSingles, Double, Triples ... systematic number of configurations blows up multi-configuration SCF multiple configurations $\Psi_i = \sum_{i}^{M} C_{ij} \psi_j.$ free to choose, not black box! optimize both CI and MO coefficients basis for higher level methods **MultiReferenceCl** single excitations double excitations $\Phi = \sum_{I} \left(K_{I} \Psi_{I} + \sum_{i,a} K_{Iia} \Psi_{Iia} + \sum_{i,a,j,b} K_{Iiajb} \Psi_{Iiajb} + \dots \right)$

a root in MCSC

of Slaters in each configuration in root

Slater

correlation energy truncated configuration interaction

ClSingles, Double, Triples ...

systematic

number of configurations blows up

multi-configuration SCF

multiple configurations

free to choose, not black box!

optimize both CI and MO coefficients

basis for higher level methods

MultiReferenceCl

$$\Psi_i = \sum_j^M C_{ij} \psi_j.$$

$$\Phi = \sum_{I} (K_I \Psi_I + \sum_{i,a} K_{Iia} \Psi_{Iia} + \sum_{i,a,j,b} K_{Iiajb} \Psi_{Iiajb} + \dots)$$

perturbation theory: CASPI2

energy

occupied

RHF

φ_k

Φ_{m+2}

Φ_{m+2}

φ_{m+1}

φ_m

Φ_{m-1}

φ_{m-2}

φ,

full CI

CASSCF

m=2n

multi-configuration SCF

Complete Active Space SCF

select electrons and orbitals for full CI (HF, NBO)

knowledge/intuition/luck

multi-configuration SCF

Complete Active Space SCF

select electrons and orbitals for full CI (HF, NBO)

knowledge/intuition/luck/

Configuration Interaction

linear combination of Slater determinants

$$\Psi = |\psi_0\rangle + \sum_a^r c_a^r |\psi_a^r\rangle + \sum_a^r \sum_{b>a}^{s>r} c_{ab}^{rs} |\psi_{ab}^r\rangle$$
$$+ \sum_a^r \sum_{b>a}^{s>r} \sum_{c>b}^{t>s} c_{abc}^{rst} |\psi_{abc}^{rst}\rangle$$
$$+ \sum_a^r \sum_{b>a}^{s>r} \sum_{c>b}^{t>s} \sum_{d>c}^{u>t} c_{abcd}^{rstu} |\psi_{abcd}^{rstu}\rangle + \dots$$

intermediate normalization

$$\langle \Psi | \psi_0 \rangle = 1$$

size consistent, if all determinants are included

variational in c

Beyond Hartree-Fock: Configuration Interaction

one-electron basisset

$$\Phi(\mathbf{x}_1) = \sum_i a_i \phi_i(\mathbf{x}_1)$$

two-electron basisset

$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \sum_i a_i(\mathbf{x}_2)\phi_i(\mathbf{x}_1)$$
$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \sum_i \sum_j b_{ij}\phi_i(\mathbf{x}_1)\phi_j(\mathbf{x}_2)$$

n-electron basisset

slater determinants, single, double, triple, ... excitations

$$\Phi = |\Psi_0\rangle + \sum_{a}^{n_{\text{occ}}} \sum_{r}^{n_{\text{virt}}} c_a^r |\Psi_a^r\rangle + \sum_{a}^{n_{\text{occ}}} \sum_{b}^{n_{\text{occ}}} \sum_{r}^{n_{\text{virt}}} \sum_{s}^{n_{\text{virt}}} c_{ab}^{rs} |\Psi_{ab}^{rs}\rangle + \dots$$

Brillouin's theorem

$$\langle \Psi_0 | \hat{H} | \Psi_a^r \rangle = 0$$

truncate: CIS, CISD, CISDT, CISDTQ, ... (size inconsistent!!)

Configuration Interaction

linear combination of Slater determinants

$$\Psi = |\psi_0\rangle + \sum_a^r c_a^r \hat{X}_a^r |\psi_0\rangle + \sum_a^r \sum_{b>a}^{s>r} c_{ab}^{rs} \hat{X}_{ab}^{rs} |\psi_0\rangle$$

$$+\sum_{a}^{r}\sum_{b>a}^{s>r}\sum_{c>b}^{t>s}c_{abc}^{rst}\hat{X}_{abc}^{rst}|\psi_{0}\rangle$$

$$+\sum_{a}^{r}\sum_{b>a}^{s>r}\sum_{c>b}^{t>s}\sum_{d>c}^{u>t}c_{abcd}^{rstu}\hat{X}_{abcd}^{rstu}|\psi_{0}\rangle+\dots$$

truncation of full CI to limit computational effort

CISD, CISDT, CISDTQ, ...

not size consistent because not all determinants are included

Full Configuration Interaction expansion

all determinants included

example H_2 and $2 H_2$

$$= |1_1\bar{1}_1\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1}|2_1\bar{2}_1\rangle$$

$$2 H_2: \quad \Psi^{12} = |1_1\bar{1}_11_2\bar{1}_2\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1}|2_1\bar{2}_11_2\bar{1}_2\rangle + c_{1_2\bar{1}_2}^{2_2\bar{2}_2}|1_1\bar{1}_12_2\bar{2}_2\rangle$$

$$+c_{1_1\bar{1}_1\bar{1}_1\bar{1}_2\bar{1}_2}^{2_1\bar{2}_1\bar{2}_2\bar{2}_2}|2_1\bar{2}_12_2\bar{2}_2\rangle$$

Truncated Configuration Interaction expansion

only include HF, single and doubly excited determinants 2 H₂: $\Psi^{12} = |1_1\bar{1}_11_2\bar{1}_2\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1}|2_1\bar{2}_11_2\bar{1}_2\rangle + c_{1_2\bar{1}_2}^{2_2\bar{2}_2}|1_1\bar{1}_12_2\bar{2}_2\rangle$

Full Configuration Interaction expansion

all determinants included

2 H₂: $\Psi^{12} = |1_1 \overline{1}_1 1_2 \overline{1}_2 \rangle + c_{1_1 \overline{1}_1}^{2_1 \overline{2}_1} |2_1 \overline{2}_1 1_2 \overline{1}_2 \rangle + c_{1_2 \overline{1}_2}^{2_2 \overline{2}_2} |1_1 \overline{1}_1 2_2 \overline{2}_2 \rangle$

2

 $+c_{1_1\bar{1}_11_2\bar{1}_2}^{2_1\bar{2}_12_2\bar{2}_2}|2_1\bar{2}_12_2\bar{2}_2\rangle$

Truncated Configuration Interaction expansion only include HF, single and doubly excited determinants

2 H₂:
$$\Psi^{12} = |1_1 \overline{1}_1 1_2 \overline{1}_2 \rangle + c_{1_1 \overline{1}_1}^{2_1 \overline{2}_1} |2_1 \overline{2}_1 1_2 \overline{1}_2 \rangle + c_{1_2 \overline{1}_2}^{2_2 \overline{2}_2} |1_1 \overline{1}_1 2_2 \overline{2}_2 \rangle$$

not size consistent!

$$\lim_{N \to \infty} \frac{E_{\text{CISD}}^{\text{corr.}}}{N} = 0$$

beyond Hartree Fock Full CI

all determinants included

$$\begin{split} \Psi^{12} &= |1_1 \bar{1}_1 1_2 \bar{1}_2 \rangle + c_{1_1 \bar{1}_1}^{2_1 \bar{2}_1} |2_1 \bar{2}_1 1_2 \bar{1}_2 \rangle + c_{1_2 \bar{1}_2}^{2_2 \bar{2}_2} |1_1 \bar{1}_1 2_2 \bar{2}_2 \rangle \\ &+ c_{1_1 \bar{1}_1 1_2 \bar{1}_2}^{2_1 \bar{2}_2 \bar{2}_2} |2_1 \bar{2}_1 2_2 \bar{2}_2 \rangle \\ \text{at large separation: independent molecules!} \\ \Psi^{12} &= \Psi^1 \Psi^2 \end{split}$$

$$= \left(|1_1\bar{1}_1\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1} |2_1\bar{2}_1\rangle \right) \left(|1_2\bar{1}_2\rangle + c_{1_2\bar{1}_2}^{2_2\bar{2}_2} |2_2\bar{2}_2\rangle \right)$$

$$= |1_1\bar{1}_1\rangle|1_2\bar{1}_2\rangle + c_{1_1\bar{1}_1}^{2_1\bar{2}_1}|2_1\bar{2}_1\rangle|1_2\bar{1}_2\rangle + c_{1_2\bar{1}_2}^{2_2\bar{2}_2}|1_1\bar{1}_1\rangle|2_2\bar{2}_2\rangle$$

$$+c_{1_1\bar{1}_1}^{2_1\bar{2}_1}c_{1_2\bar{1}_2}^{2_2\bar{2}_2}|2_1\bar{2}_1\rangle|2_2\bar{2}_2\rangle$$

idea

approximate the quadruples coefficients by doubles...

$$c_{abcd}^{rstu} \approx c_{ab}^{rs} * c_{cd}^{tu}$$

due to anti-symmetry there are 18 such terms:

$$c^{rstu}_{abcd} \approx c^{rs}_{ab} c^{tu}_{cd} - c^{rs}_{ac} c^{tu}_{bd} + c^{rs}_{ad} c^{tu}_{bc} + \dots$$

coupled-clusters doubles wavefunction

$$\Psi^{CCD} = \Pi_{ab,rs} \left(1 + c_{ab}^{rs} X_{ab}^{rs} \right) |\psi_0\rangle$$

non-linear expansion in coefficients

all (2n)-tuply excited determinants included: size consistent! only uses doubles coefficients

non-variational

idea

approximate the n-tuply coefficients by singles, doubles, ..

$$\begin{aligned} c^{rstu}_{abcd} &\approx c^{rs}_{ab} * c^{tu}_{cd} \\ c^{rstuv}_{abcde} &\approx c^{rs}_{ab} * c^{tu}_{cd} * c^{v}_{e} \\ c^{rstuvw}_{abcdef} &\approx c^{rs}_{ab} * c^{tu}_{cd} * c^{vw}_{ef} \end{aligned}$$

general case

non-linear expansion in coefficients and excitations

$$\Psi^{CC} = \left[\Pi_{a,r}(1 + c_a^r X_a^r)\right] \left[\Pi_{ab,rs}(1 + c_{ab}^{rs} X_{ab}^{rs})\right] \dots |\psi_0\rangle$$

identical to full CI if all possible excitation levels are considered

general case

non-linear expansion in coefficients and excitations

$$\Psi^{CC} = \left[\Pi_{a,r}(1 + c_a^r X_a^r)\right] \left[\Pi_{ab,rs}(1 + c_{ab}^{rs} X_{ab}^{rs})\right] \dots |\psi_0\rangle$$

identical to full CI if all possible excitation levels are considered

close to full CI otherwise, because all excitations are approximately included

restrict excitation level to doubles: CCSD

$$\Psi^{CCSD} = \left[\Pi_{a,r}(1 + c_a^r X_a^r)\right] \left[\Pi_{ab,rs}(1 + c_{ab}^{rs} X_{ab}^{rs})\right] |\psi_0\rangle$$

all n-tuply excited determinants included: size consistent!

only singles and doubles coefficients needed

optimization of coefficients

general case

non-linear expansion in coefficients and excitations

$$\Psi^{CC} = \left[\Pi_{a,r}(1 + c_a^r X_a^r)\right] \left[\Pi_{ab,rs}(1 + c_{ab}^{rs} X_{ab}^{rs})\right] \dots |\psi_0\rangle$$

exponential ansatz

since

$$\hat{X}^{rs}_{ab}\hat{X}^{rs}_{ab} = 0$$

we can use the Taylor series

$$1 + c_{ab}^{rs} \hat{X}_{ab}^{rs} = 1 + c_{ab}^{rs} \hat{X}_{ab}^{rs} + \frac{1}{2} (c_{ab}^{rs})^2 \hat{X}_{ab}^{rs} \hat{X}_{ab}^{rs} + \dots = \exp(c_{ab}^{rs} \hat{X}_{ab}^{rs})$$

to recast the coupled clusters expansion

$$\Psi^{CC} = \Pi_{a,r} \exp(c_a^r \hat{X}_a^r) \Pi_{ab,rs} \exp(c_{ab}^{rs} \hat{X}_{ab}^{rs}) \dots |\psi_0\rangle$$
$$\Psi^{CC} = \exp\left(\sum_{a,r} c_a^r \hat{X}_a^r + \sum_{ab,rs} c_{ab}^{rs} \hat{X}_{ab}^{rs} + \dots\right) |\psi_0\rangle$$

exponential ansatz of CC

$$\Psi^{CC} = \exp\left(\sum_{a,r} c_a^r \hat{x}_a^r + \sum_{ab,rs} c_{ab}^{rs} \hat{X}_{ab}^{rs} + \dots\right) |\psi_0\rangle$$

restrict excitation level up to doubles: CCSD

$$\Psi^{CCSD} = \exp\left(\sum_{a,r} c_a^r \hat{x}_a^r + \sum_{ab,rs} c_{ab}^{rs} \hat{X}_{ab}^{rs}\right) |\psi_0\rangle$$

includes all excited determinants: size consistent!

only uses singles and doubles coefficients

single reference methods

- works only if HF is reasonable approximation
- fails if ground state has multi-configurational character: dissociation!
- **UHF** reference

Beyond Hartree-Fock: Perturbation Theory

Møller-Plesset

zeroth order Hamiltonian

$$\hat{H}^0 = \sum_{i}^{n_e} \hat{f}(\mathbf{r}_i) = \sum_{i}^{n_e} \left(\hat{h}^0(\mathbf{r}_i) + \hat{v}^{\mathrm{mf}}(\mathbf{r}_i) \right)$$

zeroth order wave function

$$\Psi(\mathbf{x}_1, \mathbf{x}_1, \dots, \mathbf{x}_n) = \det[\varphi_1(\mathbf{x}_1)\varphi_2(\mathbf{x}_2)\dots\varphi_n(\mathbf{x}_n)]$$

zeroth order energy (!!)

$$E^0 = \sum_{i}^{n_e} \epsilon_i$$

true Hamiltonian

$$\hat{H} = \hat{H}^0 + \hat{V}$$

perturbation

$$\hat{H} = \sum_{i}^{n_{e}} \hat{h}^{0}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i}^{n_{e}} \sum_{j}^{n_{e}} \frac{1}{r_{ij}}$$

Beyond Hartree-Fock: Perturbation Theory

Møller-Plesset

zeroth order Hamiltonian

$$\hat{H}^0 = \sum_{i}^{n_e} \hat{f}(\mathbf{r}_i) = \sum_{i}^{n_e} \left(\hat{h}^0(\mathbf{r}_i) + \hat{v}^{\mathrm{mf}}(\mathbf{r}_i) \right)$$

true Hamiltonian

$$\hat{H} = \sum_{i}^{n_e} \hat{h}^0(\mathbf{r}_i) + \frac{1}{2} \sum_{i}^{n_e} \sum_{j}^{n_e} \frac{1}{r_{ij}}$$

perturbation

$$\hat{V} = \hat{H} - \hat{H}^{0}$$
$$\hat{V} = \frac{1}{2} \sum_{i}^{n_{e}} \sum_{j}^{n_{e}} \frac{1}{r_{ij}} - \sum_{i}^{n_{e}} v^{\text{mf}}$$

Beyond Hartree-Fock: Perturbation Theory

Møller-Plesset

perturbation

$$\hat{V} = \frac{1}{2} \sum_{i}^{n_e} \sum_{j}^{n_e} \frac{1}{r_{ij}} - \sum_{i}^{n_e} \hat{v}^{\text{mf}}$$

first order correction to energy

$$E_0^{(1)} = -\frac{1}{2} \sum_{j=1}^{n_e} \sum_{j=1}^{n_e} \int \int \varphi_i^*(\mathbf{x}_1) \varphi_j^*(\mathbf{x}_2) \frac{1 - \hat{P}_{12}}{r_{12}} \varphi_i(\mathbf{x}_1) \varphi_j(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$

second order correction to energy

$$\begin{split} E_{0}^{(2)} &= \sum_{j \neq 0} \frac{|\langle \Psi_{0} | \hat{V} | \Psi_{j} \rangle|^{2}}{E_{0}^{(0)} - E_{j}^{(0)}} \\ E_{0}^{(2)} &= \frac{1}{4} \sum_{a}^{n_{\text{occ}}} \sum_{b}^{n_{\text{occ}}} \sum_{r}^{n_{\text{virt}}} \sum_{s}^{n_{\text{virt}}} \frac{|\langle \Psi_{0} | \hat{V} | \Psi_{ab}^{rs} \rangle|^{2}}{\epsilon_{a} + \epsilon_{b} - \epsilon_{r} - \epsilon_{s}} \\ E_{0}^{(2)} &= \frac{1}{4} \sum_{a}^{n_{\text{occ}}} \sum_{b}^{n_{\text{occ}}} \sum_{r}^{n_{\text{virt}}} \sum_{s}^{n_{\text{virt}}} \frac{|\int \int \varphi_{a}^{*}(\mathbf{x}_{1}) \varphi_{b}^{*}(\mathbf{x}_{2}) \frac{1 - \hat{P}_{12}}{r_{12}} \varphi_{r}(\mathbf{x}_{1}) \varphi_{s}(\mathbf{x}_{2}) d\mathbf{x}_{1} d\mathbf{x}_{2}|^{2}}{\epsilon_{a} + \epsilon_{b} - \epsilon_{r} - \epsilon_{s}} \end{split}$$

Semi-empirical quantum chemistry

Fock Matrix elements

basisfunctions (N⁵ operations)

 $F_{\mu\nu} = h^0_{\mu\nu}$

 $+2\sum_{a}\sum_{\kappa}\sum_{\lambda}c_{\kappa a}^{*}c_{\lambda a}^{*}\int\int\gamma_{\mu}^{*}(\mathbf{r}_{1})\gamma_{\kappa}^{*}(\mathbf{r}_{2})\frac{1}{r_{12}}\gamma_{\lambda}(\mathbf{r}_{2})\gamma_{\nu}(\mathbf{r}_{1})d\mathbf{r}_{1}d\mathbf{r}_{2}$ $-\sum_{a}\sum_{\kappa}\sum_{\lambda}c_{\kappa a}^{*}c_{\lambda a}^{*}\int\int\gamma_{\mu}^{*}(\mathbf{r}_{1})\gamma_{\kappa}^{*}(\mathbf{r}_{2})\frac{1}{r_{12}}\gamma_{\nu}(\mathbf{r}_{2})\gamma_{a}(\mathbf{r}_{1})d\mathbf{r}_{1}d\mathbf{r}_{2}$

speeding up the calculation of Fock matrix

only valence electrons (2s,2p)

minimal basis, one function per electron

zero differential overlap

$$S_{\mu\nu} = \langle \gamma_{\mu} | \gamma_{\nu} \rangle = \delta_{\mu\nu}$$

replace remaining integral by parameters fitted to experimental data (NIST) NDDO, MNDO, MNDO/d, AMI, PM3

Hohenberg-Kohn theorems

exact mapping between non-interacting and interacting electronic systems

$$\Psi^{\mathrm{real}} \longleftarrow V^{\mathrm{eff}}[\rho(\mathbf{r})] \longrightarrow \Psi^{\mathrm{non-int.}}$$

effective potential exists, so that densities are the same (ground-state only!!)

$$H^{\text{non-int.}} = \sum_{i}^{N} \left(-\frac{1}{2}\nabla^2 + V^{\text{eff}}\right)$$

one-electron wavefunctions: Kohn-Sham orbitals

$$\left(-\frac{1}{2}\nabla^2 + V^{\text{eff}}\right)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

density of both systems

$$\rho(\mathbf{r}) = \sum_{i}^{n} |\phi(\mathbf{r})|^2$$

with exact effective potential

$$\rho(\mathbf{r}) = \rho^{\mathrm{real}}(\mathbf{r})$$

Hohenberg-Kohn theorems

exact mapping between non-interacting and interacting electronic systems

$$\Psi^{\text{real}} \longleftarrow V^{\text{eff}}[\rho(\mathbf{r})] \longrightarrow \Psi^{\text{non-int.}}$$

ground-state only

energy functional

$$E[\rho] = T[\rho] + E_{ee}[\rho] + E_{ne}[\rho] + E_{XC}[\rho]$$

variational principle

$$E[\rho(\mathbf{r})] = \min_{\Psi \to \rho} \langle \Psi | \hat{H} | \Psi \rangle \ge E_0$$

energy functional

 $E[\rho] = T[\rho] + E_{ee}[\rho] + E_{ne}[\rho] + E_{XC}[\rho]$

electron-electron repulsion

$$E_{ee}[\rho] = \frac{1}{2} \int \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}|} d\mathbf{r} d\mathbf{r}'$$

electron-nuclei attraction

$$E_{en}[\rho] = \int \sum_{A}^{N} \frac{Z_A}{|\mathbf{R}_A - \mathbf{r}|} \rho(\mathbf{r}) d\mathbf{r} = \int V_{en}(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r}$$

exchange-correlation energy (uniform electron gas)

$$E_{XC}^{\text{LDA}}[\rho] = \int \epsilon_{XC}(\rho(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r}$$

kinetic energy of non-interacting systems

$$T[\rho(\mathbf{r})] = \min_{\Psi \to \rho} \langle \Psi | \hat{T}^{\text{non-int.}} | \Psi \rangle$$

minimize functional with respect to density

$$\partial E = \int \left(\frac{\partial}{\partial \rho}T + V_{ee} + E_{ne} + V_{XC}\right) \partial \rho d\mathbf{r} = 0$$

electron-electron repulsion

$$V_{ee}([\rho], r) = \frac{1}{2} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}|} d\mathbf{r}'$$

electron-nuclei attraction

$$V_{en}([\rho], \mathbf{r}) = \sum_{A} \frac{Z_A}{|\mathbf{R}_A - \mathbf{r}|}$$

exchange-correlation energy (uniform electron gas)

$$V_{XC}^{\text{LDA}}([\rho], \mathbf{r}) = \frac{\partial}{\partial \rho} E_{XC}^{\text{LDA}} = \rho(\mathbf{r}) \frac{\partial \epsilon_{XC}(\rho(\mathbf{r}))}{\partial \rho} \Big|_{\rho = \rho(r)} + \epsilon_{XC}(\rho(\mathbf{r}))$$

energy functional of non-interacting system

$$E^{\text{non-int.}}[\rho] = T[\rho] + \int V^{\text{eff}}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}$$

minimize functional of non-interacting system

$$\partial E^{\text{non-int.}}[\rho] = \int \left(\frac{\partial}{\partial\rho}T[\rho] + V^{\text{eff}}(\mathbf{r})\right)\partial\rho(\mathbf{r})d\mathbf{r} = 0$$

kinetic energy functional

$$\frac{\partial}{\partial\rho}T[\rho] = -V^{\text{eff}}(\mathbf{r})$$

effective potential function of true potentials

$$V^{\text{eff}}(\mathbf{r}) = V_{en}(\mathbf{r}) + V_{ee}([\rho], \mathbf{r}) + V_{XC}([\rho], \mathbf{r})$$

Practical DFT scheme

Step I:guess density $ho({f r})$

Step 2: construct effective potential

 $V^{\text{eff}}(\mathbf{r}) = V_{en}(\mathbf{r}) + V_{ee}([\rho], \mathbf{r}) + V_{XC}([\rho], \mathbf{r})$

Step 3a: solve the Schrödinger equation for non-interacting electrons

$$\left(-\frac{1}{2}\nabla^2 + V^{\text{eff}}\right)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Step 3b: compute new density & kinetic energy

$$\rho(\mathbf{r}) = \sum_{i}^{n} |\phi(\mathbf{r})|^{2}$$
$$T[\rho] = \sum_{i}^{n} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} |\phi_{i} \rangle = \sum_{i}^{n} \epsilon_{i} - \int V^{\text{eff}}(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r}$$

Step 4: goto step 2, until convergence is reached

final energy:

$$E[\rho_0] = \sum_{i}^{n} \epsilon_i - \int V^{\text{eff}}(\mathbf{r})\rho_0(\mathbf{r})d\mathbf{r} + E_{en}[\rho_0] + E_{ee}[\rho_0] + E_{XC}[\rho_0]$$

Variational Monte Carlo

expectation value of energy

$$\frac{\int \Psi_T^*(\mathbf{r}, \{\alpha\}) \hat{H} \Psi_T(\mathbf{r}, \{\alpha\}) d\mathbf{r}}{\int \Psi_T^*(\mathbf{r}, \{\alpha\}) \Psi_T(\mathbf{r}, \{\alpha\}) d\mathbf{r}} = E(\{\alpha\}) \ge E_0$$

importance sampling (Monte Carlo)

$$p(\mathbf{r}) = \frac{|\Psi(\mathbf{r})|}{\int |\Psi(\mathbf{r}')| d\mathbf{r}'}$$

local energy

$$E_L(\mathbf{r}) = \frac{\hat{H}\Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})}$$

Sampling of energy, optimize coefficients in wavefunction

$$\langle \hat{H} \rangle = \int p(\mathbf{r}) E_L(\mathbf{r}) d\mathbf{r}$$
$$\langle \hat{H} \rangle = \frac{1}{M} \sum_{i=1}^M E_L(\mathbf{r}_i) = \frac{1}{M} \sum_{i=1}^M \frac{\hat{H} \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})}$$

Variational Monte Carlo

wavefunction

$$\Psi_T(\mathbf{x}) = \exp[J(\mathbf{x})] \sum_i c_i D_i(\mathbf{x})$$

determinant (antisymmetric)

$$D_{i}(\mathbf{x}) = \begin{vmatrix} \varphi_{1}(\mathbf{x}_{1}) & \varphi_{1}(\mathbf{x}_{2}) & \dots & \varphi_{1}(\mathbf{x}_{n}) \\ \varphi_{2}(\mathbf{x}_{1}) & \varphi_{2}(\mathbf{x}_{2}) & \dots & \varphi_{2}(\mathbf{x}_{n}) \\ \dots & \dots & \dots & \dots \\ \varphi_{n}(\mathbf{x}_{1}) & \varphi_{n}(\mathbf{x}_{2}) & \dots & \varphi_{n}(\mathbf{x}_{n}) \end{vmatrix}$$

Jastrow factor

$$J(\mathbf{r}) = \sum_{i>j}^{N} u(r_{ij}) + \sum_{i=1}^{N} \sum_{I=1}^{N_I} \chi_I(r_{iI}) + \sum_{i>j}^{N} \sum_{I=1}^{N_I} f_I(r_{ij}, r_{iI}, r_{jI})$$

Diffusion Monte Carlo

propagate Schrödinger equation in imaginary time

$$i\frac{\partial\Psi(\mathbf{r},t)}{\partial t} = -\frac{1}{2}\nabla^2\Psi(\mathbf{r},t) + V(\mathbf{r},t)\Psi(\mathbf{r},t)$$
$$\tau = it$$

diffusion equation of electronic possitions

$$-\frac{\partial \Psi^{\text{DMC}}(\mathbf{R},t)}{\partial \tau} = -\frac{1}{2}\nabla^2 \Psi(\mathbf{r},\tau) + (V(\mathbf{r}) - E_T)\Psi(\mathbf{r},t)$$

project out ground state

Diffusion Monte Carlo

propagate Schrödinger equation in imaginary time

$$-\frac{\partial \Psi^{\text{DMC}}(\mathbf{R},t)}{\partial \tau} = -\frac{1}{2}\nabla^2 \Psi(\mathbf{r},\tau) + (V(\mathbf{r}) - E_T)\Psi(\mathbf{r},t)$$

expansion in (unknown) eigenstates

$$\Psi(\mathbf{r},t) = \sum_{n=0}^{\infty} c_n \psi_n(\mathbf{r}) e^{-i(E_n - E_t)t}$$

$$\infty$$

$$\Psi(\mathbf{r},\tau) = \sum_{n=0}^{\infty} c_n \psi_n(\mathbf{r}) e^{-(E_n - E_t)\tau}$$

with $E_T=E_0$ we can single out ground state in diffusion process

$$\Psi(\mathbf{r},\tau) = c_0 \psi_0(\mathbf{r}) + \sum_{n=1}^{\infty} c_n \psi_n(\mathbf{r}) e^{-(E_n - E_0)\tau}$$

Some practical guidelines

- Basissets
 - STO-3G too small
 - 6-31G* & 6-31G** reasonable results
 - DFT often less sensitive to basisset
 - often better than cc-pVDZ
 - higher accuracy with cc-pVTZ, better than 6-311G**, etc.
 - diffuse functions (aug- or +)
 - anions
 - excited states
 - dispersion bound complexes

Some practical guidelines

- Methods
 - prefer DFT over HF
 - $HF < DFT \sim MP2 < CCSD < CCSD(T)$
 - MPn may not converge with n
 - beyond MP2, use CC
 - CASSCF/CASPT2
 - bond breaking, diradicals, excited states, transition metals
 - DFT can be dangerous
 - HF, semi-empirical and DFT fail for VDW complexes
 - MP2, CC, dispersion corrected DFT

Some practical guidelines

Always do!

check if SCF converged!

check for multiconfigurational character (MPn/CC:T2)

check if geometry converged

- NMA analysis
- minimum: all postive frequencies
- transition state: one negative frequency.
- non-covalent complexes: flat surface, difficult, go by hand

think of symmetry

- optimization cannot break symmetry
- know what to expect: think first
 - never thrust the computer

CASSCF/CASPT2

check final natural orbital density matrix check for large orbital rotations

Analytical derivatives

$$\frac{\partial E}{\partial X_A} = \frac{\partial \tilde{E}}{\partial X_A} + \sum_{\mu a} \frac{\partial E}{\partial C_{\mu a}} \frac{\partial C_{\mu a}}{\partial X_A}$$

Hartree Fock solution

$$\frac{\partial E}{\partial X_A} = \frac{\partial \tilde{E}}{\partial X_A}$$

Hartree-Fock energy

$$E = \sum_{\mu\nu} P_{\mu\nu} H^{\text{core}}_{\mu\nu} + \frac{1}{2} \sum_{\mu\nu\lambda\sigma} P_{\mu\nu} P_{\lambda\sigma} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + V_{NN}$$

$$P_{\mu\nu} = 2\sum_{a}^{n/2} C^*_{\mu a} C_{\nu a}$$

Analytical derivatives

Hartree Fock energy

$$E = \sum_{\mu\nu} P_{\mu\nu} H^{\text{core}}_{\mu\nu} + \frac{1}{2} \sum_{\mu\nu\lambda\sigma} P_{\mu\nu} P_{\lambda\sigma} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + V_{NN}$$

gradient

$$\frac{\partial E}{\partial X_A} = \sum_{\mu\nu} P_{\mu\nu} \frac{\partial H_{\mu\nu}^{\text{core}}}{\partial X_A}$$

$$+ \frac{1}{2} \sum_{\mu\nu\lambda\sigma} P_{\mu\nu} P_{\lambda\sigma} \frac{\partial}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle + \frac{V_{NN}}{\partial X_A} \langle \mu\nu | \frac{1 - \frac{1}{2}\hat{p}_{12}}{r_{12}} |\lambda\sigma\rangle +$$

$$+\sum_{\mu\nu}\frac{\partial P_{\mu\nu}}{\partial X_A}H^{\rm core}_{\mu\nu}+\sum_{\mu\nu\lambda\sigma}\frac{\partial P_{\mu\nu}}{\partial X_A}P_{\lambda\sigma}\langle\mu\nu|\frac{1-\frac{1}{2}\hat{p}_{12}}{r_{12}}|\lambda\sigma\rangle$$

Analytical derivatives

orthogonality of RHF molecular orbitals

$$\sum_{\mu\nu} C_{\mu a} S_{\mu\nu} C_{\nu b} = \delta_{ab}$$
$$2 \sum_{\mu\nu} \frac{\partial C_{\mu a}}{\partial X_A} S_{\mu\nu} = -\sum_{\mu\nu} C_{\mu a} C_{\nu a} \frac{\partial S_{\mu\nu}}{\partial X_A}$$

gradient

$$\frac{\partial E}{\partial X_A} = \sum_{\mu\nu} P_{\mu\nu} \frac{\partial H_{\mu\nu}^{\text{core}}}{\partial X_A}$$

$$+\frac{1}{2}\sum_{\mu\nu\lambda\sigma}P_{\mu\nu}P_{\lambda\sigma}\frac{\partial}{\partial X_{A}}\langle\mu\nu|\frac{1-\frac{1}{2}\hat{p}_{12}}{r_{12}}|\lambda\sigma\rangle+\frac{V_{NN}}{\partial X_{A}}|\lambda\sigma\rangle+\frac{V_{NN}}{\partial X_{A}}|\lambda\sigma\rangle+\frac{V_{NN}}{\partial X_{$$

$$-\sum_{\mu\nu}Q_{\mu\nu}\frac{\partial S_{\mu\nu}}{\partial X_A}$$

with $n/2 Q_{\mu\nu} = 2 \sum^{n/2} \epsilon_a C_{\mu a} C_{\nu a}$ a

Analytical derivatives

Configuration interaction

$$|\Psi\rangle = \sum_{I} c_{I} |\psi_{I}\rangle$$

general gradient

$$\frac{\partial E}{\partial X_A} = \frac{\partial \tilde{E}}{\partial X_A} + \sum_{\mu a} \frac{\partial E}{\partial C_{\mu i}} \frac{\partial C_{\mu i}}{\partial X_A} + \sum \frac{\partial E}{\partial c_I} \frac{\partial c_I}{\partial X_A}$$

MCSCF gradient

$$\frac{\partial E}{\partial X_A} = \frac{\partial \tilde{E}}{\partial X_A}$$

CI gradient

$$\frac{\partial E}{\partial X_A} = \frac{\partial \tilde{E}}{\partial X_A} + \sum_{\mu a} \frac{\partial E}{\partial C_{\mu i}} \frac{\partial C_{\mu i}}{\partial X_A}$$