Born-Oppenheimer Approximation central to chemistry separation slow (nuclear) and fast (electronic) motion light electrons: QM (HF, DFT, ...), classical (MM) heavy nuclei: QM (wavepacket/grid), classical (MD) crux: nuclei move on single electronic PES large energy gap between electronic states derivation of Born-Oppenheimer terms couple nuclear motion on different electronic PES break down of Born-Oppenheimer approximation small energy gap between electronic states near surface crossings (degeneracies) radiationless transition adiabatic and diabatic electronic states

molecular Schrödinger equation

$$H\Psi = i\hbar \frac{\partial}{\partial t}\Psi \qquad \quad H\Psi = E\Psi$$

molecular Hamilton operator

$$H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$$

with

$$\begin{split} T_N &= -\frac{1}{2} \sum_{i}^{N_N} \frac{\hbar^2}{M_i} \nabla_{\mathbf{R}}^2 \\ T_e &= -\frac{\hbar^2}{2m_e} \sum_{i}^{n_e} \nabla_{\mathbf{r}}^2 \\ U(\mathbf{r}, \mathbf{R}) &= \frac{e^2}{4\pi\epsilon_0} \left(\sum_{I}^{N_N} \sum_{J>I}^{N_N} \frac{Z_I Z_J}{|\mathbf{R}_A - \mathbf{R}_B|} - \sum_{I}^{N_N} \sum_{k}^{n_e} \frac{Z_I}{|\mathbf{r}_k - \mathbf{R}_B|} + \sum_{j}^{n_e} \sum_{k>j}^{n_e} \frac{1}{|\mathbf{r}_k - \mathbf{r}_j|} \right) \end{split}$$

molecular Hamilton operator

 $H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$

step I: clamped nuclei

separation of fast and slow degrees of freedom

 $T_N = 0$

always possible, not an approximation!

sometimes wrong choice: coupling between 'fast' and 'slow' motions

consider only electronic degrees of freedom

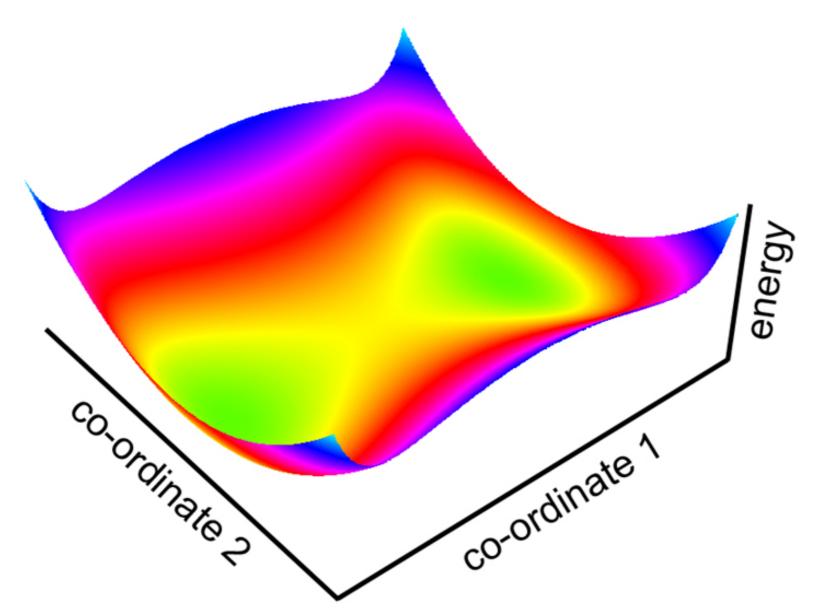
 $H^e = T_e + U(\mathbf{r}, \mathbf{R})$

electronic Schrödinger equation in field of fixed nuclei $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

 $i \ge 1$: CI, SA-CASSCF, MRCI

electronic Schrödinger equation in field of fixed nuclei $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

electronic potential energy surface (PES)



electronic Schrödinger equation in field of fixed nuclei

diagonalize electronic Hamiltonian

 $H^e \psi_i(\mathbf{r};\mathbf{R}) = V_i(\mathbf{R})\psi_i(\mathbf{r};\mathbf{R})$

solution form orthogonal basis

adiabatic electronic states

$$\langle \psi_i | \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(\mathbf{r}; \mathbf{R})^* \psi_j(\mathbf{r}; \mathbf{R}) d\mathbf{r} = \delta_{ij}$$

Born representation: expansion in electronic basis

expansion coefficients are nuclear wave functions

$$\Psi(\mathbf{r},\mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R})\psi_{j}(\mathbf{r};\mathbf{R}),$$

no approximations so far!

molecular wave function in Born representation

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r}; \mathbf{R}),$$
$$H^{e} \psi_{i}(\mathbf{r}; \mathbf{R}) = V_{i}(\mathbf{R}) \psi_{i}(\mathbf{r}; \mathbf{R})$$

molecular Hamiltonian

$$H = T_N + T_e + U(\mathbf{r}, \mathbf{R}) = T_N + H^e(\mathbf{R})$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = E \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = E \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

using short-hand notation

$$H_{ij}(\mathbf{R}) = \langle \psi_i(\mathbf{r}; \mathbf{R}) | H | \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$

= $\langle \psi_i(\mathbf{r}; \mathbf{R}) | T_N | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + V_i(\mathbf{R}) \delta_{ij}$

coupled differential equations

$$\sum_{j} H_{ij}(\mathbf{R})\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

elements of nuclear kinetic energy matrix

 $\langle \psi_i | T_N | \psi_j \rangle | \chi_j \rangle = \frac{-\hbar^2}{2M_k} \langle \psi_i | \nabla_{\mathbf{R}}^2 | \psi_j \rangle | \chi_j \rangle$

 $= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \nabla_{\mathbf{R}} \cdot \nabla_{\mathbf{R}} | \psi_j \rangle \right) | \chi_j \rangle$

 $= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \nabla_{\mathbf{R}} | [\nabla_{\mathbf{R}} \psi_j] \rangle + \langle \psi_i | \nabla_{\mathbf{R}} | \psi_j \rangle \nabla_{\mathbf{R}} \right) | \chi_j \rangle$

$$= \frac{-\hbar^2}{2M_k} \left(\left\langle \psi_i \right| \left[\nabla_{\mathbf{R}}^2 \psi_j \right] \right\rangle + \left\langle \psi_i \right| \left[\nabla_{\mathbf{R}} \psi_j \right] \right\rangle \nabla_{\mathbf{R}} +$$

 $\langle \psi_i | [\nabla_{\mathbf{R}} \psi_j] \rangle \nabla_{\mathbf{R}} + \langle \psi_i | \psi_j \rangle \nabla_{\mathbf{R}}^2) | \chi_j \rangle$

 $= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \left[\nabla_{\mathbf{R}}^2 \psi_j \right] \rangle + 2 \langle \psi_i | \left[\nabla_{\mathbf{R}} \psi_j \right] \rangle \nabla_{\mathbf{R}} + \langle \psi_i | \psi_j \rangle \nabla_{\mathbf{R}}^2 \right) | \chi_j \rangle$

$$= \frac{-\hbar^2}{2M_k} (G_{ij} + 2\mathbf{F}_{ij}\nabla_{\mathbf{R}}) |\chi_j\rangle + T_N \delta_{ij} |\chi_j\rangle$$

$$= (T_N \delta_{ij} - \Lambda_{ij}) |\chi_j\rangle$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} H_{ij}(\mathbf{R})\chi_j(\mathbf{R}) = E\chi_i(\mathbf{R})$$

collect all couplings in special operator $H_{ij}(\mathbf{R}) = [T_N + V_i(\mathbf{R})] \,\delta_{ij} - \Lambda_{ij}$

coupled equations

coupling between nuclear wave packets on different electronic PES coupling due to nuclear kinetic energy operator operating on electrons kind of resonance with energy exchange

$$[T_N + V_i(\mathbf{R})] \chi_i(\mathbf{R}) - \sum_j \Lambda_{ij} \chi_j(\mathbf{R}) = E \chi_i(\mathbf{R})$$

coupled equations

$$[T_N + V_i(\mathbf{R})] \chi_i(\mathbf{R}) - \sum_j \Lambda_{ij} \chi_j(\mathbf{R}) = E \chi_i(\mathbf{R})$$

non-adiabatic coupling operator matrix elements

$$\Lambda_{ij}(\mathbf{R}) = \sum_{k} \frac{\hbar^2}{2M_k} \left[2\mathbf{F}_{ij}^k(\mathbf{R}) \nabla_{\mathbf{R}_k} + G_{ij}^k(\mathbf{R}) \right]$$

with elements

 $\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle \text{ non-adiabatic coupling vector}$

 $G_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}_k}^2 \psi_j(\mathbf{r}; \mathbf{R}) \rangle$ scalar coupling inversely proportional to nuclear mass! small terms due to mass difference, but...

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

using the following relation

$$\nabla_{\mathbf{R}} H^{e}(\mathbf{r};\mathbf{R})\psi_{j}(\mathbf{r};\mathbf{R}) = \nabla_{\mathbf{R}} V_{j}(\mathbf{R})\psi_{j}(\mathbf{r};\mathbf{R})$$

and some lines of algebra to show that

Hellman-Feynmann term

$$\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$$

... coupling inversely proportional to energy gap!

non-adiabatic coupling matrix element

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

no diagonal elements

$$\mathbf{F}_{ii}^k(\mathbf{R}) = 0$$

because

$$\nabla_{\mathbf{R}} \langle \psi_i | \psi_i \rangle = 0$$

 $\langle \nabla_{\mathbf{R}} \psi_i | \psi \rangle + \langle \psi_i | \nabla_{\mathbf{R}} \psi_i \rangle = 0$

 $\langle \psi_i | \nabla_{\mathbf{R}} \psi \rangle + \text{c.c} = 0$

nuclear Schrödinger in Born representation

$$[T_N + V_i(\mathbf{R})] \chi_i(\mathbf{R}) - \sum_j \Lambda_{ij} \chi_j(\mathbf{R}) = E \chi_i(\mathbf{R})$$

coupling between nuclear wavepackets on different PES

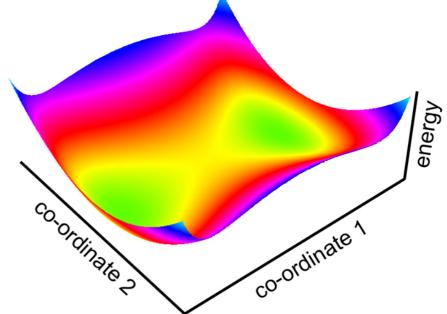
Born-Oppenheimer approximation: $\Lambda = \Lambda_{ii}$

$$[T_N + V_i(\mathbf{R}) - \Lambda_{ii}] \chi_i(\mathbf{R}) = E \chi_i(\mathbf{R})$$

nuclear wavepackets restricted to single electronic PES $\Psi_i^{\text{tot}}(\mathbf{R}, \mathbf{r}) = \chi_i(\mathbf{R})\psi_i(\mathbf{r}; \mathbf{R})$ adiabatic approximation: $\Lambda = 0$

$$[T_N + V_i(\mathbf{R})] \chi_i(\mathbf{R}) = E \chi_i(\mathbf{R})$$

mostly used in quantum chemistry



Born-Oppenheimer Approximation nuclear Schrödinger in Born representation

$$[T_N + V_i(\mathbf{R})] \chi_i(\mathbf{R}) - \sum_j \Lambda_{ij} \chi_j(\mathbf{R}) = E \chi_i(\mathbf{R})$$

using atomic units and scaled coordinates

$$T_N = -\frac{1}{2M} \nabla_{\mathbf{R}}^2$$
$$\Lambda_{ij} = \frac{1}{2M} \left(2\mathbf{F}_{ij} \cdot \nabla_{\mathbf{R}} + G_{ij} \right) \right)$$

 $\mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \qquad G_{ij} = \langle \psi_i | \nabla_{\mathbf{R}}^2 \psi_j \rangle$

using atomic units and scaled coordinates

$$T_N = -\frac{1}{2M} \nabla_{\mathbf{R}}^2$$
$$\Lambda_{ij} = \frac{1}{2M} \left(2\mathbf{F}_{ij} \cdot \nabla_{\mathbf{R}} + G_{ij} \right)$$

$$\mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \qquad G_{ij} = \langle \psi_i | \nabla_{\mathbf{R}}^2 \psi_j \rangle$$

using the relation

$$\mathbf{G} = \nabla_{\mathbf{R}} \cdot \mathbf{F} + \mathbf{F} \cdot \mathbf{F}$$

one arrives at

$$\left[-\frac{1}{2M}\left(\nabla_{\mathbf{R}}+\mathbf{F}\right)^{2}+\mathbf{V}\right]\boldsymbol{\chi}=E\boldsymbol{\chi}$$

nuclear Schrödinger in vector notation

$$\left[-\frac{1}{2M}\left(\nabla_{\mathbf{R}}+\mathbf{F}\right)^{2}+\mathbf{V}\right]\boldsymbol{\chi}=E\boldsymbol{\chi}$$

dressed kinetic energy operator

$$\tilde{T}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

non local & non diagonal

couples nuclear dynamics on multiple electronic PES

induces radiationless transitions!

potential energy operator

local & diagonal

no coupling

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$$

inversely proportional with gap!

break down of adiabatic approximation!

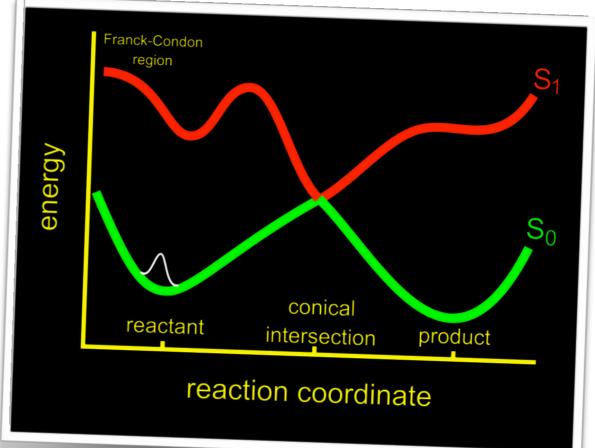
non-adiabatic dynamics

multiple surfaces

branching

interference/coherence

photochemistry



intersection between adiabatic surfaces

adiabatic electronic basis

diagonal & local potential matrix

$$\langle \psi_i | H^e | \psi_j \rangle = \delta_{ij} V_j$$

non-diagonal & non-local nuclear kinetic energy matrix

$$\langle \psi_i | T_N | \psi_j \rangle = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \left\langle \psi_i | \nabla_{\mathbf{R}} | \psi_j \right\rangle \right)^2$$

coupling in ${\boldsymbol{F}}$

diabatic representation

non-diagonal & local potential matrix $\langle \varphi_i | H^e | \varphi_j \rangle = W_{ij}$ coupling in W

diagonal nuclear kinetic energy matrix

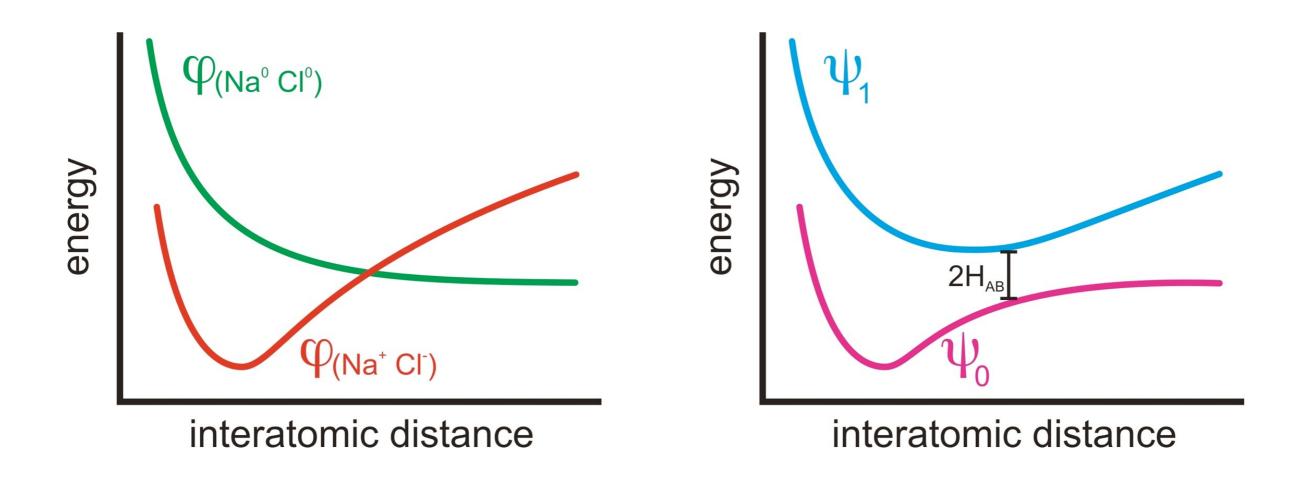
$$\langle \varphi_i | T_N | \varphi_j \rangle = -\frac{\delta_{ij}}{2M} \nabla_{\mathbf{R}}^2$$

diabatic electronic basis

electronic character preserved

adiabatic electronic basis

electronic character mixed



diabatic representation

non-diagonal & local potential matrix

$$\langle \varphi_i | H^e | \varphi_j \rangle = W_{ij}$$

diagonal nuclear kinetic energy matrix

$$\langle \varphi_i | T_N | \varphi_j \rangle = -\frac{\delta_{ij}}{2M} \nabla_{\mathbf{R}}^2$$

molecular Hamiltonian

$$H_{ij} = T_N \delta i j + W_{ij}$$

molecular Schrödinger equation

$$\sum_{j} H_{ij}\chi_j = T_N\chi_i + \sum_{j} W_{ij}\chi_j = E\chi_i$$

 $\mathbf{H}\boldsymbol{\chi} = [T_N \mathbf{1} + \mathbf{W}(\mathbf{R})] \, \boldsymbol{\chi} = E \boldsymbol{\chi}$

construction of diabatic basis

unitary transformation for each nuclear configuration

$$\varphi_i(\mathbf{r};\mathbf{R}) = \sum_j \psi_j(\mathbf{r};\mathbf{R}) U_{ji}(\mathbf{R})$$

construction of diabatic Hamiltonian

kinetic energy (diagonal) $T_N^d \mathbf{1} = \mathbf{U}^{\dagger} \tilde{\mathbf{T}}_N \mathbf{U}$

dressed kinetic energy operator

$$\tilde{\mathbf{T}}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

transformation should nullify non-adiabatic coupling

construction of diabatic Hamiltonian

dressed kinetic energy operator

$$\tilde{\mathbf{T}}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

transformation should nullify non-adiabatic coupling

$$\langle \varphi_i | \nabla_{\mathbf{R}} \varphi_j \rangle = \sum_k \sum_l U_{ki}^*(\mathbf{R}) \langle \psi_k | \nabla_{\mathbf{R}} U_{lj}(\mathbf{R}) \psi_l \rangle$$

 $= \sum_{k} \sum_{l} \left[U_{ki}^{*}(\mathbf{R}\langle\psi_{k}|\psi_{l}\rangle\nabla_{\mathbf{R}}U_{lj}(\mathbf{R}) + U_{ki}^{*}(\mathbf{R})\langle\psi_{k}|\nabla_{\mathbf{R}}|\psi_{l}\rangle U_{lj}(\mathbf{R}) \right]$

$$= \sum_{k} U_{ki}^* \nabla_{\mathbf{R}} U_{kj} + \sum_{k} \sum_{l} U_{ki}^* (\mathbf{R}) \langle \psi_k | \nabla_{\mathbf{R}} | \psi_l \rangle U_{lj} (\mathbf{R})$$

find U such that

$$\mathbf{U}^{\mathbf{T}}\mathbf{F}\mathbf{U} + \mathbf{U}^{\mathbf{T}}\nabla_{\mathbf{R}}\mathbf{U} = \mathbf{0}$$

Born-Oppenheimer Approximation derivation separation between fast and slow degrees of freedom nuclei move on single adiabatic PES ignore non-adiabatic coupling breakdown small energy gap between electronic PES at intersections infinite non-adiabatic coupling nuclear displacement couple different adiabatic states highly complicated nuclear wave function switch to diabatic basis only electronic coupling unitary transformation

surface crossings

funnels for photochemical reactions

conditions for crossing between two electronic states

adiabatic representation

two coordinates needed to locate intersection

two coordinates needed to lift degeneracy

topology of intersection

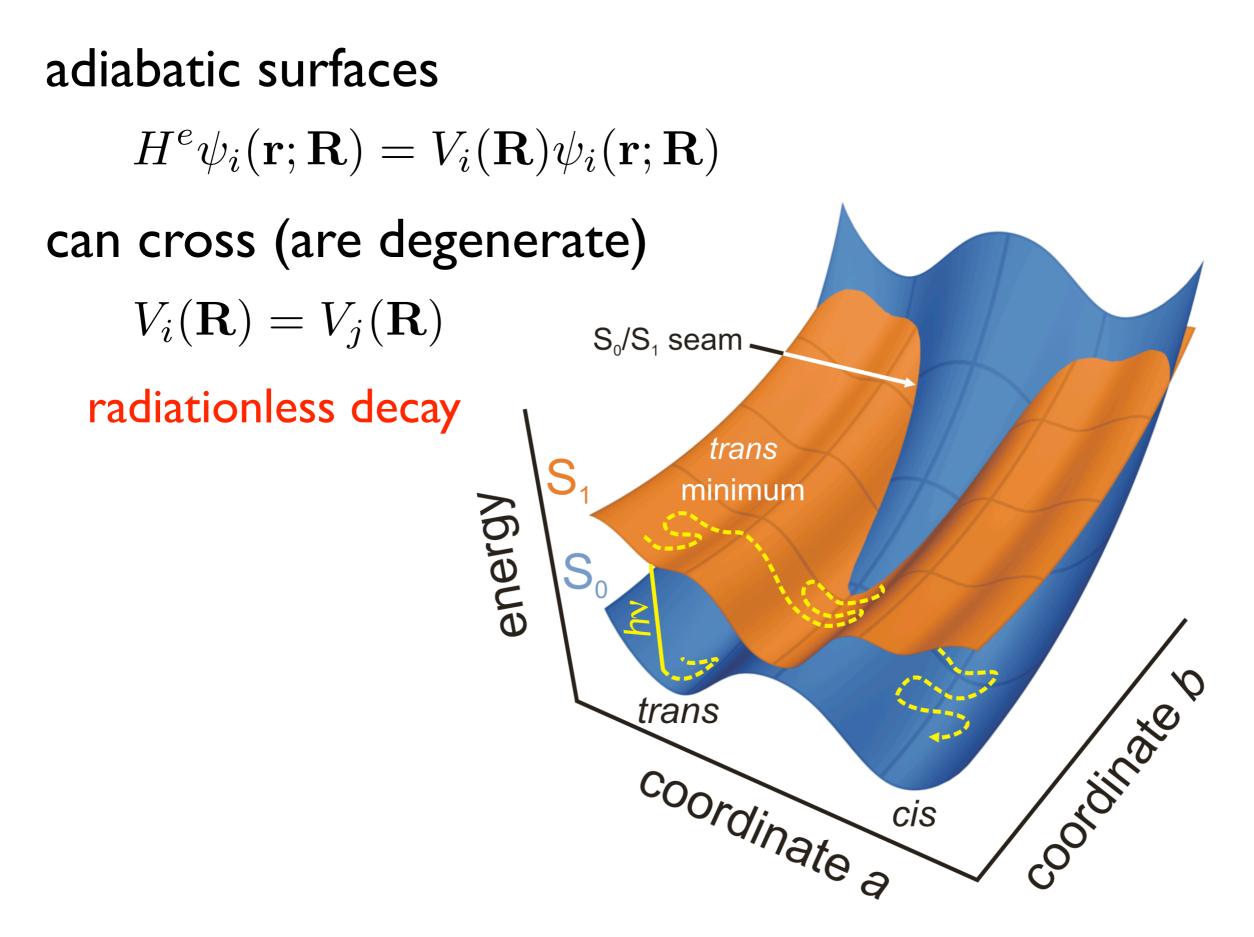
double cone

2N-8 dimensional hyperline

properties of intersection

Berry phase

singularity due to separation between electronic and nuclear motion compensated by nuclear wavefunction (complicated!)



adiabatic surfaces

 $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

can cross (are degenerate)

 $V_i(\mathbf{R}) = V_j(\mathbf{R})$

break-down of Born-Oppenheimer

non-adiabatic coupling becomes infinite! $\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$

switch to diabatic basis

no non-adiabatic coupling

back to adiabatic basis by diagonalizing ${\bf W}$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

construct mixed diabatic/adiabatic basis at ${f R}_0$

via unitary transformation

$$\{\varphi_2,\varphi_1,\psi_3,...,\psi_n\}$$

orthonormal

$$\langle \psi_i | \psi_j \rangle = \delta_{ij} \quad \langle \varphi_I | \varphi_J \rangle = \delta_{IJ} \quad \langle \varphi_I | \psi_j \rangle = 0$$

diabatic and adiabatic energies for two lowest states

$$E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$$

adiabatic wave functions

 $\psi_1 = c_{11}\varphi_1 + c_{12}\varphi_2 \qquad \psi_2 = c_{21}\varphi_1 + c_{22}\varphi_2$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

transformation to mixed diabatic/adiabatic basis at $\ensuremath{\mathbf{R}}_0$

diabatic electronic energies $E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$ $\mathbf{W}(\mathbf{R}_0) = \mathbf{V}(\mathbf{R}_0)$ $W_{ij} = H_{ij} = \langle \varphi_i | H^e | \varphi_j \rangle$ $\mathbf{W}(\mathbf{R}_0) = \begin{pmatrix} H_{11}(\mathbf{R}_0) & H_{12}(\mathbf{R}_0) \\ H_{12}(\mathbf{R}_0) & H_{22}(\mathbf{R}_0) \end{pmatrix}$

degeneracy between two electronic states at \mathbf{R}_0

diabatic electronic energies

$$\mathbf{W}(\mathbf{R_0}) = \begin{pmatrix} H_{11}(\mathbf{R_0}) & H_{12}(\mathbf{R_0}) \\ H_{12}(\mathbf{R_0}) & H_{22}(\mathbf{R_0}) \end{pmatrix}$$

adiabatic electronic energies

diagonalize W

$$V_1(\mathbf{R_0}) = \left(\frac{H_{11} + H_{22}}{2}\right) - \sqrt{\left(\frac{H_{11} - H_{22}}{2}\right)^2 + H_{12}^2}$$
$$V_2(\mathbf{R_0}) = \left(\frac{H_{11} + H_{22}}{2}\right) + \sqrt{\left(\frac{H_{11} - H_{22}}{2}\right)^2 + H_{12}^2}$$

degeneracy (crossing) if

$$H_{11} = H_{22} \wedge H_{12} = 0$$

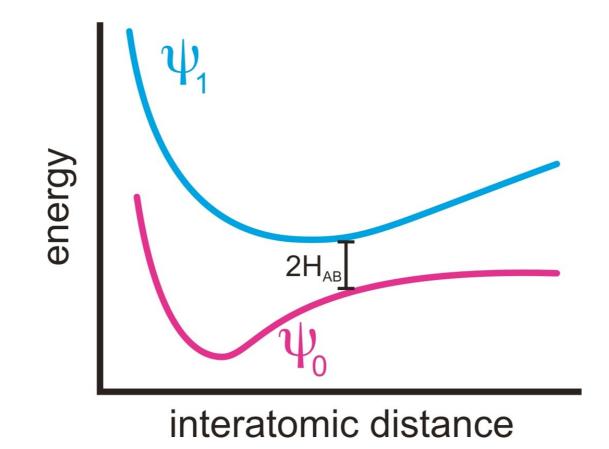
independent: 2 coordinates required to locate degeneracy degeneracy preserved in N-8 remaining internal coordinates

degeneracy between two electronic states at \mathbf{R}_0 two coordinates required to locate degeneracy

degeneracy (crossing) if $H_{11} = H_{22} \wedge H_{12} = 0$

non-crossing rule

diatomics



topology of intersection expand W around \mathbf{R}_0 $\mathbf{W}(\mathbf{R} - \mathbf{R}_0) = \mathbf{W}^{(0)} + \mathbf{W}^{(1)} + \mathbf{W}^{(2)} + ...$

zeroth order term

$$\mathbf{W}^{(0)} = \frac{E_A + E_B}{2} \mathbf{1} + \begin{pmatrix} -\frac{E_B - E_A}{2} & 0 \\ 0 & \frac{E_B - E_A}{2} \end{pmatrix}$$

offset, set to zero for convenience $\mathbf{W}^{(0)} = \mathbf{0}$

first order term

$$\mathbf{W}^{(1)} = \begin{pmatrix} \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} + \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} \\ \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} - \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} \end{pmatrix}$$

 $\Delta \mathbf{R} = \mathbf{R}_0 - \mathbf{R}$

topology of intersection

first order term

$$\mathbf{W}^{(1)} = \begin{pmatrix} \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} + \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} - \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \mathbf{M} \end{pmatrix} \\ \mathbf{W}^{(1)} = \begin{pmatrix} \mathbf{s} \cdot \Delta \mathbf{R} + \mathbf{g} \cdot \Delta \mathbf{R} & \mathbf{h} \cdot \Delta \mathbf{R} \\ \mathbf{h} \cdot \Delta \mathbf{R} & \mathbf{s} \cdot \Delta \mathbf{R} - \mathbf{g} \cdot \Delta \mathbf{R} \end{pmatrix}$$

average gradient vector

$$\mathbf{s} = \nabla_{\mathbf{R}} \frac{H_{11} + H_{22}}{2} |\mathbf{R}_0|$$

gradient difference vector

$$\mathbf{g} = \nabla_{\mathbf{R}} \frac{H_{11} - H_{22}}{2} |\mathbf{R}_0|$$

derivative coupling vector

 $\mathbf{h} = \nabla_{\mathbf{R}} H_{12} | \mathbf{R}_0$

topology of intersection

keeping only terms to first order

 $\mathbf{W}(\Delta \mathbf{R}) \approx \mathbf{W}^{(0)} + \mathbf{W}^{(1)}$

set zeroth order term to zero (just an offset)

$$\mathbf{W}(\Delta \mathbf{R}) pprox \left(egin{array}{ccc} \mathbf{s} \cdot \Delta \mathbf{R} + \mathbf{g} \cdot \Delta \mathbf{R} & \mathbf{h} \cdot \Delta \mathbf{R} \\ \mathbf{h} \cdot \Delta \mathbf{R} & \mathbf{s} \cdot \mathbf{\Delta R} - \mathbf{g} \cdot \mathbf{\Delta R} \end{array}
ight)$$

diagonalize to get adiabatic PES

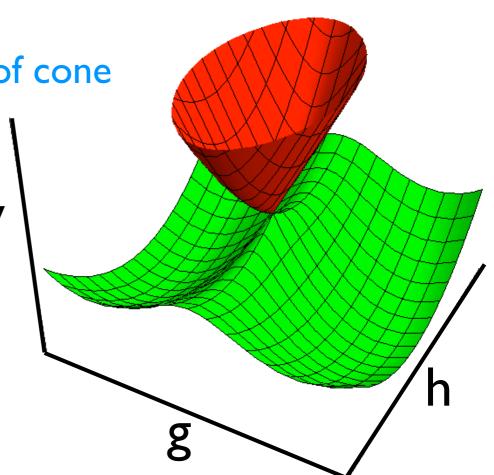
$$V_1(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} - \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$$
$$V_2(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} + \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$$

topology of intersection eigenvalues of W $V_1(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} - \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \overline{\Delta \mathbf{R}})^2}$ $V_2(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} + \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$ double cone in branching space (g-h space) adiabatic surfaces touch at tip average gradient projected on g-h gives tilt of cone g

|-----

topology of intersection eigenvalues of W $V_1(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} - \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$ $V_2(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} + \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$

double cone in branching space (g-h space) to first order! adiabatic surfaces touch at tip average gradient projected on g-h gives tilt of cone



 \mathbf{V}

back to adiabatic basis

degeneracy requires (to first order) that

 $\mathbf{g} \cdot \Delta \mathbf{R} = \mathbf{0} \wedge \mathbf{h} \cdot \Delta \mathbf{R}$

independent: accidental same-symmetry intersection

two coordinate need to change to locate intersection

single degree of freedom: non-crossing rule in diatomics

degeneracy lifted in branching space

degeneracy maintained in 3N-8 remaining degree of freedom

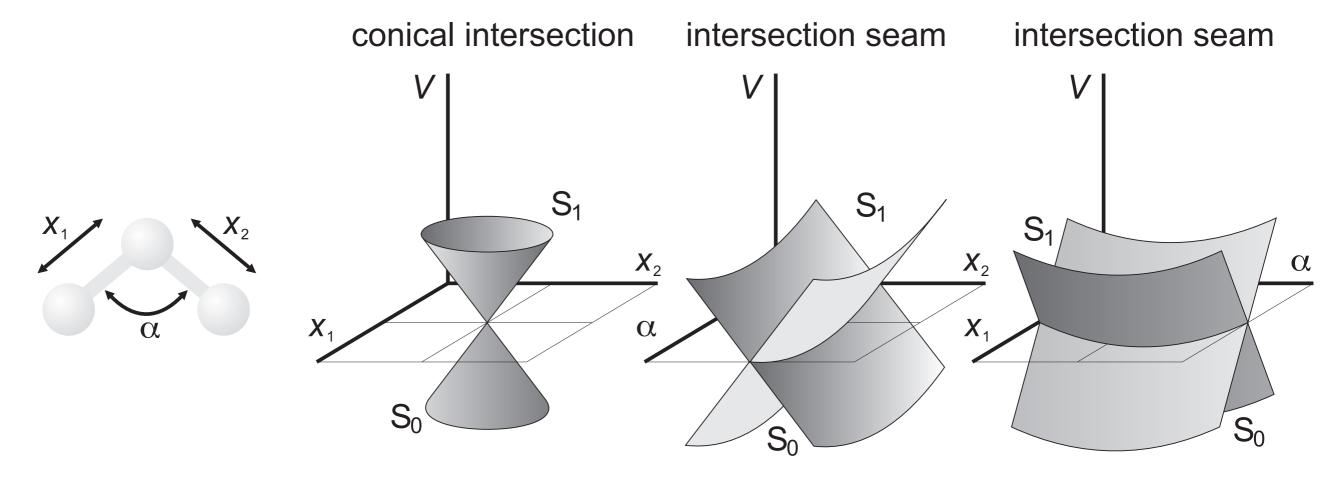
back to adiabatic basis

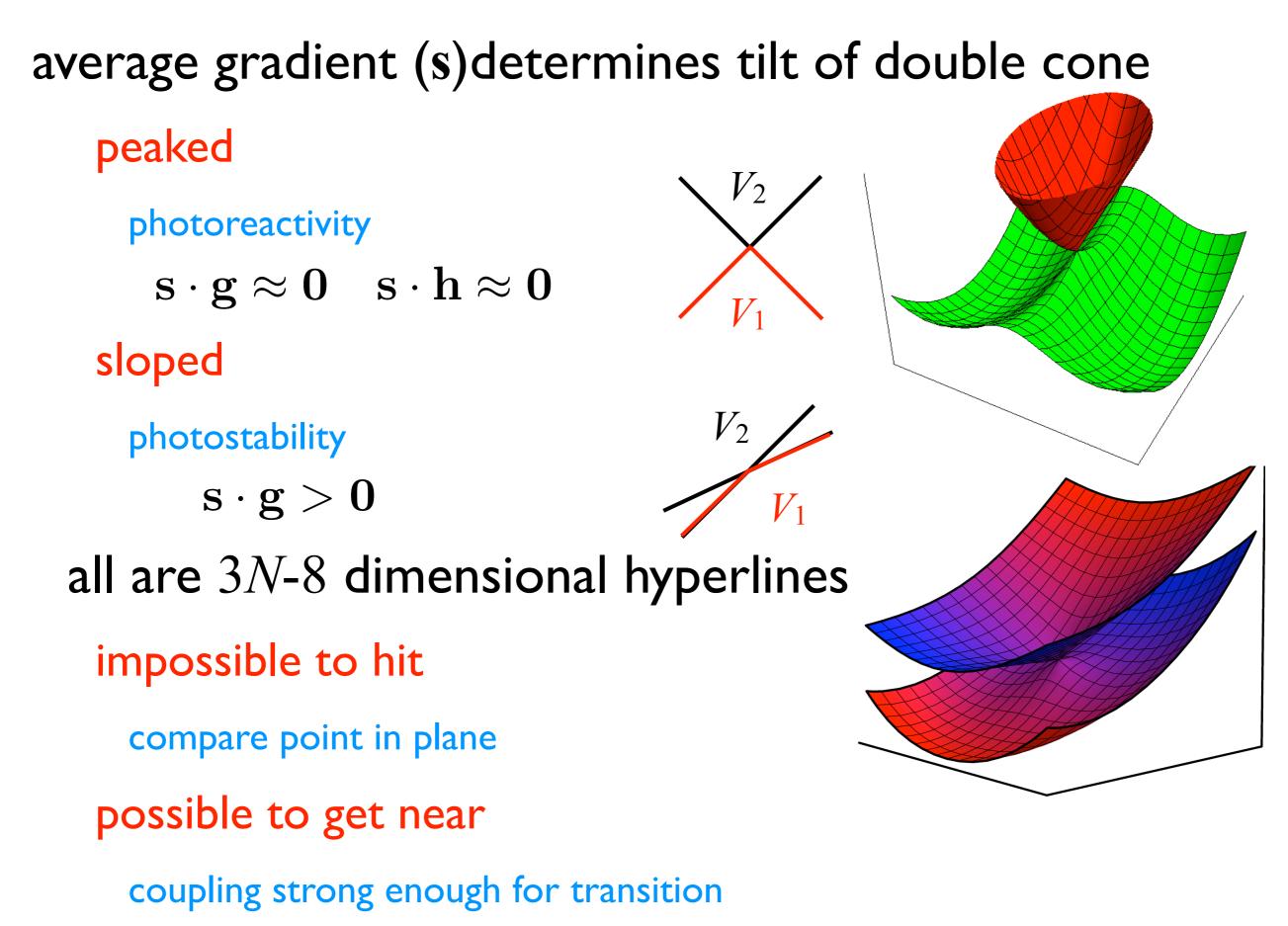
degeneracy lifted in branching space

 $\mathbf{x}_1 = \|\mathbf{g}\| \quad \mathbf{x}_2 = \|\mathbf{h}\|$

degeneracy maintained in 3N-8 remaining degree of freedom

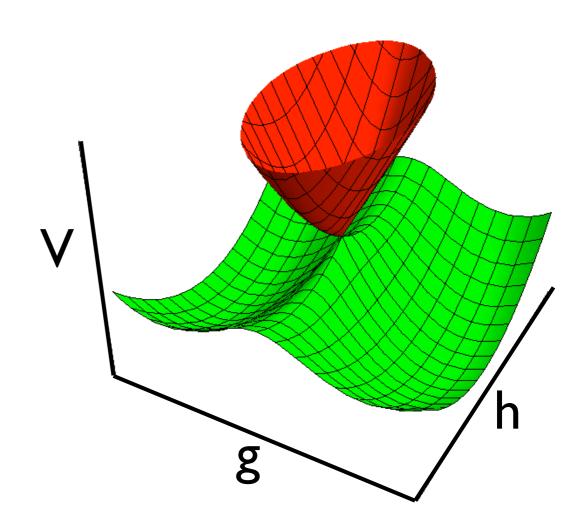
tri-atomics: hypothetical example





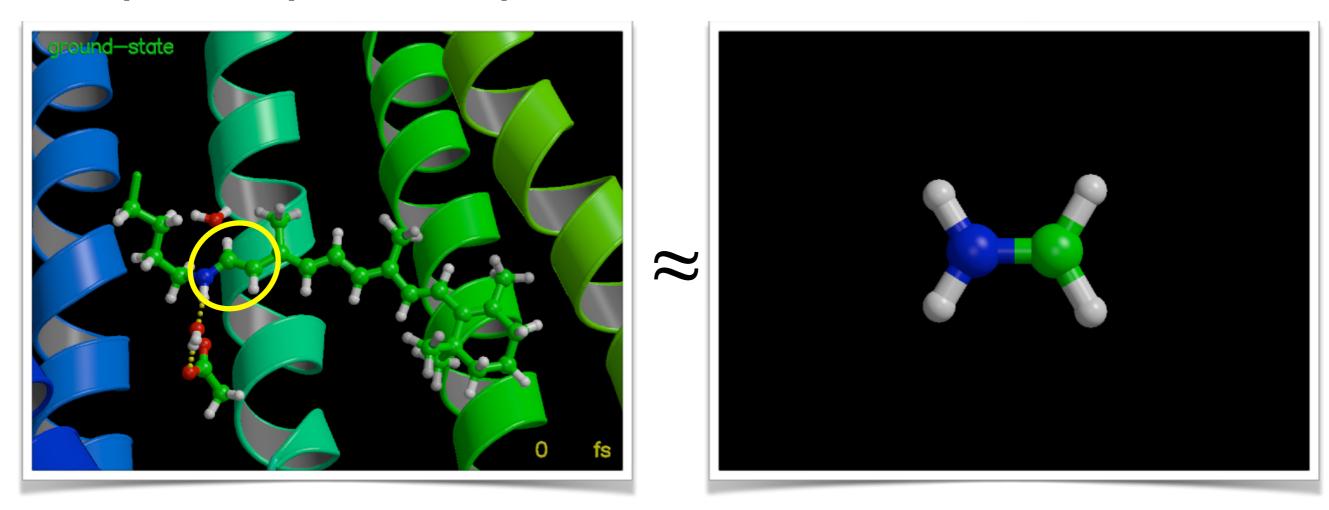
they are everywhere!

- finding them
 - electronic structure of excited & ground state: SA-CASSCF
 - optimization on S_1 in N-2 internal degrees of freedom
 - minimize gap in g-h plane
- example for practical



finding them

- electronic structure of excited & ground state: SA-CASSCF
- optimization on S_1 in N-2 internal degrees of freedom
- minimize gap in g-h plane
- example for practical: photoisomerization



example for practical: photoisomerization

optimizing conical intersection in protonated formaldimine

