
Born-Oppenheimer Approximation
central to chemistry
separation slow (nuclear) and fast (electronic) motion

break down of Born-Oppenheimer approximation

light electrons: QM (HF, DFT, ...), classical (MM)
heavy nuclei: QM (wavepacket/grid), classical (MD)

crux: nuclei move on single electronic PES
large energy gap between electronic states

near surface crossings (degeneracies)

small energy gap between electronic states

radiationless transition

adiabatic and diabatic electronic states

derivation of Born-Oppenheimer
terms couple nuclear motion on different electronic PES



H = TN + Te + U(r,R)
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Born-Oppenheimer Approximation
molecular Schrödinger equation
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step 1: clamped nuclei

TN = 0

H
e = Te + U(r,R)

H
e
 i(r;R) = Vi(R) i(r;R)

Born-Oppenheimer Approximation

H = TN + Te + U(r,R)

molecular Hamilton operator

consider only electronic degrees of freedom

electronic Schrödinger equation in field of fixed nuclei

i ≥1: CI, SA-CASSCF, MRCI

always possible, not an approximation!

sometimes wrong choice: coupling between ‘fast’ and ‘slow’ motions

separation of fast and slow degrees of freedom



H
e
 i(r;R) = Vi(R) i(r;R)

electronic Schrödinger equation in field of fixed nuclei

Born-Oppenheimer Approximation

electronic potential energy surface (PES)



solution form orthogonal basis

Born representation: expansion in electronic basis

h i| ji =
Z 1

�1
 i(r;R)⇤ j(r;R)dr = �ij

 (r,R) =
X

j

�j(R) j(r;R),

H
e
 i(r;R) = Vi(R) i(r;R)

electronic Schrödinger equation in field of fixed nuclei

Born-Oppenheimer Approximation

expansion coefficients are nuclear wave functions

adiabatic electronic states

diagonalize electronic Hamiltonian

no approximations so far!
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h i|H| ji�j(R) = E
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h i| ji�j(R)

molecular wave function in Born representation

Born-Oppenheimer Approximation

 (r,R) =
X

j

�j(R) j(r;R),

molecular Hamiltonian
H = TN + Te + U(r,R) = TN +H

e(R)

substitute and multiply from left by      and integrateh i|

H
e
 i(r;R) = Vi(R) i(r;R)



substitute and multiply from left by      and integrateh i|

Hij(R) = h i(r;R)|H| j(r;R)i

= h i(r;R)|TN | j(r;R)i+ Vi(R)�ij

Born-Oppenheimer Approximation

using short-hand notation

coupled differential equations
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h i|H| ji�j(R) = E
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h i| ji�j(R)
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j

Hij(R)�j(R) = E�i(R)



Born-Oppenheimer Approximation
elements of nuclear kinetic energy matrix

h i|TN | ji|�ji = �~2

2Mk
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2Mk
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2Mk
(h i|rR| [rR j ]i+ h i|rR| jirR) |�ji
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R)|�ji

= �~2

2Mk
(Gij + 2FijrR)|�ji+ TN�ij |�ji

= (TN�ij � ⇤ij) |�ji



substitute and multiply from left by      and integrateh i|

Hij(R) = [TN + Vi(R)] �ij � ⇤ij

Born-Oppenheimer Approximation

collect all couplings in special operator

coupled equations

coupling due to nuclear kinetic energy operator operating on electrons 

coupling between nuclear wave packets on different electronic PES

kind of resonance with energy exchange

X

j

Hij(R)�j(R) = E�i(R)

[TN + Vi(R)]�i(R)�
X

j

⇤ij�j(R) = E�i(R)



coupled equations

Born-Oppenheimer Approximation

non-adiabatic coupling vector

scalar coupling

inversely proportional to nuclear mass!

non-adiabatic coupling operator matrix elements

⇤ij(R) =
X

k

~2
2Mk

⇥
2Fk

ij(R)rRk +Gk
ij(R)

⇤

small terms due to mass difference, but...

Fk
ij(R) = h i(r;R)|rRk j(r;R)i

Gk
ij(R) = h i(r;R)|r2

Rk
 j(r;R)i

with elements

[TN + Vi(R)]�i(R)�
X

j

⇤ij�j(R) = E�i(R)



non-adiabatic coupling vector

using the following relation

and some lines of algebra to show that

Born-Oppenheimer Approximation

Hellman-Feynmann term

rRH
e(r;R) j(r;R) = rRVj(R) j(r;R)

... coupling inversely proportional to energy gap!

Fk
ij(R) = h i(r;R)|rRk j(r;R)i

Fk
ij(R) =

h i(r;R)|rRkH
e| j(r;R)i

Vj � Vi



non-adiabatic coupling matrix element

Born-Oppenheimer Approximation

Fk
ii(R) = 0

rRh i| ii = 0

hrR i| i+ h i|rR ii = 0

h i|rR i+ c.c = 0

no diagonal elements

because

Fk
ij(R) = h i(r;R)|rRk j(r;R)i



coupling between nuclear wavepackets on different PES

Born-Oppenheimer approximation: ⇤ = ⇤ii

adiabatic approximation: ⇤ = 0

 tot
i (R, r) = �i(R) i(r;R)

Born-Oppenheimer Approximation
nuclear Schrödinger in Born representation

nuclear wavepackets restricted to single electronic PES

mostly used in quantum chemistry

[TN + Vi(R)]�i(R)�
X

j

⇤ij�j(R) = E�i(R)

[TN + Vi(R)� ⇤ii]�i(R) = E�i(R)

[TN + Vi(R)]�i(R) = E�i(R)



using atomic units and scaled coordinates

Born-Oppenheimer Approximation
nuclear Schrödinger in Born representation

⇤ij =
1

2M
(2Fij ·rR +Gij))

Fij = h i|rR ji Gij = h i|r2
R ji
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using atomic units and scaled coordinates

Born-Oppenheimer Approximation

G = rR · F+ F · F

TN = � 1

2M
r2

R

⇤ij =
1

2M
(2Fij ·rR +Gij)

Fij = h i|rR ji Gij = h i|r2
R ji

using the relation

one arrives at

� 1

2M
(rR + F)2 +V

�
� = E�



dressed kinetic energy operator

couples nuclear dynamics on multiple electronic PES

nuclear Schrödinger in vector notation

Born-Oppenheimer Approximation

local & diagonal

potential energy operator

non local & non diagonal

induces radiationless transitions!

no coupling

T̃N = � 1

2M
(rR + F)2 Fij = h i|rR ji


� 1

2M
(rR + F)2 +V

�
� = E�



inversely proportional with gap!

non-adiabatic coupling vector

Born-Oppenheimer Approximation

break down of adiabatic approximation!

branching

multiple surfaces

interference/coherence

photochemistry

non-adiabatic dynamics

intersection between adiabatic surfaces

Fk
ij(R) =

h i(r;R)|rRkH
e| j(r;R)i

Vj � Vi



adiabatic electronic basis

non-diagonal & non-local nuclear kinetic energy matrix

Born-Oppenheimer Approximation

diabatic representation

h i|He| ji = �ijVj

h i|TN | ji = � 1

2M
(rR + h i|rR| ji)2

h'i|TN |'ji = � �ij
2M

r2
R

h'i|He|'ji = Wij

diagonal & local potential matrix

non-diagonal & local potential matrix

diagonal nuclear kinetic energy matrix

coupling in W

coupling in F



diabatic electronic basis

Born-Oppenheimer Approximation

electronic character preserved

adiabatic electronic basis

electronic character mixed



Born-Oppenheimer Approximation
diabatic representation

h'i|TN |'ji = � �ij
2M

r2
R

h'i|He|'ji = Wij

non-diagonal & local potential matrix

diagonal nuclear kinetic energy matrix

Hij = TN�ij +Wij

molecular Schrödinger equation

molecular Hamiltonian

X

j

Hij�j = TN�i +
X

j

Wij�j = E�i

H� = [TN1+W(R)]� = E�



construction of diabatic basis

Born-Oppenheimer Approximation

construction of diabatic Hamiltonian

kinetic energy (diagonal)

unitary transformation for each nuclear configuration

Fij = h i|rR jiT̃N = � 1

2M
(rR + F)2

transformation should nullify non-adiabatic coupling

dressed kinetic energy operator

'i(r;R) =
X

j

 j(r;R)Uji(R)

T d
N1 = U†T̃NU



Born-Oppenheimer Approximation

Fij = h i|rR jiT̃N = � 1

2M
(rR + F)2

transformation should nullify non-adiabatic coupling

dressed kinetic energy operator

construction of diabatic Hamiltonian

UTFU+UTrRU = 0

find U such that

h'i|rR'ji =
P

k

P
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⇤
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=
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P
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⇤
ki(Rh k| lirRUlj(R) + U⇤
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⇤
kirRUkj +

P
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P
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ki(R)h k|rR| liUlj(R)



nuclei move on single adiabatic PES

Born-Oppenheimer Approximation

ignore non-adiabatic coupling

small energy gap between electronic PES

breakdown

switch to diabatic basis

nuclear displacement couple different adiabatic states

only electronic coupling

unitary transformation

derivation
separation between fast and slow degrees of freedom

highly complicated nuclear wave function

at intersections infinite non-adiabatic coupling



conditions for crossing between two electronic states

Conical Intersection
surface crossings

topology of intersection

properties of intersection
Berry phase

double cone
2N-8 dimensional hyperline

adiabatic representation

funnels for photochemical reactions

singularity due to separation between electronic and nuclear motion

compensated by nuclear wavefunction (complicated!)

two coordinates needed to locate intersection

two coordinates needed to lift degeneracy



can cross (are degenerate)

Conical Intersection

H
e
 i(r;R) = Vi(R) i(r;R)

Vi(R) = Vj(R)

adiabatic surfaces

radiationless decay



can cross (are degenerate)

Conical Intersection

H
e
 i(r;R) = Vi(R) i(r;R)

Vi(R) = Vj(R)

adiabatic surfaces

break-down of Born-Oppenheimer

switch to diabatic basis

back to adiabatic basis by diagonalizing W

no non-adiabatic coupling

non-adiabatic coupling becomes infinite!

Fk
ij(R) =

h i(r;R)|rRkH
e| j(r;R)i

Vj � Vi



Conical Intersection
degeneracy between two electronic states at R0

construct mixed diabatic/adiabatic basis at R0

diabatic and adiabatic energies for two lowest states

orthonormal

h'I | ji = 0h i| ji = �ij h'I |'Ji = �IJ

via unitary transformation

adiabatic wave functions

V1(R0) = V2(R0)

{'2,'1, 3, ..., n}

E1(R0) = E2(R0) = V1(R0) = V1(R0)

 1 = c11'1 + c12'2  2 = c21'1 + c22'2



Conical Intersection

degeneracy between two electronic states at R0

transformation to mixed diabatic/adiabatic basis at R0

diabatic electronic energies

W(R0) = V(R0)

Wij = Hij = h'i|He|'ji

W(R0) =

✓
H11(R0) H12(R0)
H12(R0) H22(R0)

◆

E1(R0) = E2(R0) = V1(R0) = V1(R0)

V1(R0) = V2(R0)



Conical Intersection
degeneracy between two electronic states at R0

diabatic electronic energies

W(R0) =

✓
H11(R0) H12(R0)
H12(R0) H22(R0)

◆

adiabatic electronic energies
diagonalize W

degeneracy (crossing) if
H11 = H22 ^H12 = 0

independent: 2 coordinates required to locate degeneracy

degeneracy preserved in N-8 remaining internal coordinates

V2(R0) =

✓
H11 +H22

2

◆
+

s✓
H11 �H22

2

◆2

+H
2
12

V1(R0) =

✓
H11 +H22

2

◆
�

s✓
H11 �H22

2

◆2

+H
2
12



Conical Intersection
degeneracy between two electronic states at R0

two coordinates required to locate degeneracy
degeneracy (crossing) if

H11 = H22 ^H12 = 0

non-crossing rule

diatomics



Conical Intersection

W(R�R0) = W(0) +W(1) +W(2) + ...

zeroth order term

first order term

W(0) =
EA + EB

2
1+

0

@
�EB�EA

2 0

0 EB�EA
2

1

A

expand W around R0 
topology of intersection

offset, set to zero for convenience

W(0) = 0

W(1) =

0

@
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�
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Conical Intersection

first order term

topology of intersection

W(1) =

0
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average gradient vector

gradient difference vector

derivative coupling vector

s = rR
H11 +H22

2
|R0

g = rR
H11 �H22

2
|R0

h = rRH12|R0

W(1) =

0

@
s ·�R+ g ·�R h ·�R

h ·�R s ·�R� g ·�R

1

A



Conical Intersection

topology of intersection

set zeroth order term to zero (just an offset)

diagonalize to get adiabatic PES

V2(�R) = s ·�R+
p
(g ·�R)2 + (h ·�R)2

V1(�R) = s ·�R�
p
(g ·�R)2 + (h ·�R)2

W(�R) ⇡

0

@
s ·�R+ g ·�R h ·�R

h ·�R s ·�R� g ·�R

1

A

W(�R) ⇡ W(0) +W(1)

keeping only terms to first order



Conical Intersection
topology of intersection

eigenvalues of W

V2(�R) = s ·�R+
p
(g ·�R)2 + (h ·�R)2

V1(�R) = s ·�R�
p
(g ·�R)2 + (h ·�R)2

double cone in branching space (g-h space)

adiabatic surfaces touch at tip

average gradient projected on g-h gives tilt of cone



Conical Intersection
topology of intersection

eigenvalues of W

V2(�R) = s ·�R+
p
(g ·�R)2 + (h ·�R)2

V1(�R) = s ·�R�
p
(g ·�R)2 + (h ·�R)2

double cone in branching space (g-h space) to first order!

adiabatic surfaces touch at tip
average gradient projected on g-h gives tilt of cone

g
h

V



Conical Intersection

back to adiabatic basis

degeneracy requires (to first order) that

single degree of freedom: non-crossing rule in diatomics

two coordinate need to change to locate intersection

independent: accidental same-symmetry intersection

degeneracy lifted in branching space

degeneracy maintained in 3N-8 remaining degree of freedom

g ·�R = 0 ^ h ·�R



Conical Intersection
back to adiabatic basis

tri-atomics: hypothetical example

degeneracy lifted in branching space

degeneracy maintained in 3N-8 remaining degree of freedom

x1 = kgk x2 = khk



Conical Intersection
average gradient (s)determines tilt of double cone

peaked

sloped

photostability

photoreactivity

all are 3N-8 dimensional hyperlines

impossible to hit

possible to get near

coupling strong enough for transition

compare point in plane

V2

V1

V2

V1
s · g ⇡ 0 s · h ⇡ 0

s · g > 0



Conical Intersection
they are everywhere!



g
h

V

Conical Intersection
finding them

electronic structure of excited & ground state: SA-CASSCF

optimization on S1 in N-2 internal degrees of freedom

minimize gap in g-h plane

example for practical



Conical Intersection
finding them

electronic structure of excited & ground state: SA-CASSCF

optimization on S1 in N-2 internal degrees of freedom

minimize gap in g-h plane

example for practical: photoisomerization

≈



Conical Intersection
example for practical: photoisomerization

optimizing conical intersection in protonated formaldimine


